Abstract:
Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface.
Abstract:
As discussed herein, there is presented an apparatus comprising micro-posts. The apparatus includes a substrate having a planar surface, a plurality of micro-posts located on the planar surface, wherein each micro-post has a base portion on the planar surface and a post portion located on a top surface of the corresponding base portion, and wherein side surfaces of the base portions intersect the planar surface at oblique angles.
Abstract:
An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.
Abstract:
A disclosed method of fabricating a hybrid nanopillar device includes forming a mask on a substrate and a layer of nanoclusters on the hard mask. The hard mask is then etched to transfer a pattern formed by the first layer of nanoclusters into a first region of the hard mask. A second nanocluster layer is formed on the substrate. A second region of the hard mask overlying a second region of the substrate is etched to create a second pattern in the hard mask. The substrate is then etched through the hard mask to form a first set of nanopillars in the first region of the substrate and a second set of nanopillars in the second region of the substrate. By varying the nanocluster deposition steps between the first and second layers of nanoclusters, the first and second sets of nanopillars will exhibit different characteristics.
Abstract:
There is provided a superhydrophobic substrate comprising a plurality of protrusions having a pseudo random distribution on one surface thereof, an average interval between respective protrusions among the plurality of protrusions being greater than an interval between light beam wave peaks of light within the visible spectrum, allowing the substrate to have durability and transparency secured therein.
Abstract:
A dry adhesive and a method of forming a dry adhesive. The method includes forming an opening through an etch layer and to a barrier layer, expanding the opening in the etch layer at the barrier layer, filling the opening with a material, removing the barrier layer from the material in the opening, and removing the etch layer from the material in the opening.
Abstract:
A cuboidal protuberant structure is provided. The cuboidal protuberant structure includes a substrate and a protrusion disposed on the substrate. The protrusion has a vertical side wall with a rounded corner, a protuberant width and a protuberant length. At least one of the protuberant width and the protuberant length is not greater than 33 nm.
Abstract:
Methods for fabricating sublithographic, nanoscale arrays of openings and linear microchannels utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the invention use a self-templating or multilayer approach to induce ordering of a self-assembling block copolymer film to an underlying base film to produce a multilayered film having an ordered array of nanostructures that can be removed to provide openings in the film which, in some embodiments, can be used as a template or mask to etch openings in an underlying material layer.
Abstract:
A nanoscale apparatus (100) includes a nanoshell (110) extending from a substrate (102) and an epitaxial connection (120) between the substrate and an end (112) of the nanoshell adjacent to the substrate. A nanoscale sensor (200) includes surfaces (204, 206) extending relatively perpendicular to each other, a nanoshell (210) extending from one of the surfaces, and a detector (220) that monitors motion of the nanoshell relative to another of the surfaces spaced from the nanoshell by a gap (208). A method (300) of making a nanoscale apparatus includes growing (310) a nanowire on a surface; forming (320) a core-shell composite nanostructure; exposing (330) an end of the nanowire opposite to the surface with a FIB; and removing (340) the nanowire core from the exposed end, such that a nanoshell having a hollow region is attached to the surface. A material of the nanoshell (110, 210) excludes sp2-bonded carbon materials.
Abstract:
Methods for fabrication of high aspect ratio micropillars and nanopillars are described. Use of alumina as an etch mask for the fabrication methods is also described. The resulting micropillars and nanopillars are analyzed and a characterization of the etch mask is provided.