Abstract:
A laminated sheet includes a base cloth layer having a porous structure obtained by impregnating a woven fabric, which has a tear strength by a trapezoid method of 150 N or more in the longitudinal direction and 100 N or more in the lateral direction, with a resin composition containing a polyurethane resin and an organic flame retardant, and a skin layer layered on the base cloth layer, and has plural air holes penetrating in the thickness direction.
Abstract:
A vinyl floor covering includes a carrier which includes a nonwoven layer of fibers containing thermoplastic fibers and high modulus threads extending in the longitudinal direction of the vinyl floor covering for eliminating wrinkles in the vinyl floor covering and for preventing the formation of printing errors and/or surface irregularities in the vinyl floor covering.
Abstract:
A tufted nonwoven with improved stitch holding, a bonded nonwoven and methods for their manufacture are described. The tufted nonwoven with improved stitch holding comprises a face material which tufts a bonded nonwoven comprising a mixture of a plurality of bicomponent filaments 1 with a plurality of bicomponent filaments 2 wherein iα) at least bicomponent filaments 1 exhibit a core/sheath geometry wherein component 11 represents the core and component 12 represents the sheath or iβ) at least bicomponent filaments 1 exhibit a side by side geometry wherein component 11 represents side 1 and component 12 represents side 2 or iγ) at least bicomponent filaments 1 exhibit an islands in the sea geometry wherein component 11 represents the islands and component 12 represents the sea ii) the component 11 exhibits a melting temperature Tm(11) and the component 22 exhibits a melting temperature Tm(22), iii) the component 12 exhibits a melting temperature Tm(12), the component 21 exhibits a melting temperature Tm(21) and Tm(12) is higher than Tm(21) and iv) the melting temperatures of both component 11 and 22 and the melting temperatures of components 12 and 21 obey to the relation both Tm(11) and Tm(22)>Tm(12)>Tm(21) an wherein the face material is bonded to bicomponent filaments 1 and 2 by a solidified melt of components 12 and 21.
Abstract:
A process to manufacture tufted backing materials comprises the steps of a) providing a roll bearing a backing material which backing material comprises a first side exhibiting a first colour and a second side exhibiting a second colour, wherein the first colour is different from the second colour, the first side is the front side and the second side is the rear side, b) unwinding the backing material from the roll, c) tufting the backing material, d) cutting the backing material at a position between the roll bearing the backing material and the tufting device, e) rotating the roll bearing the backing material by an angle of 180°, f) unwinding the backing material from the roll in a second unwinding direction which is opposite to the first unwinding direction and guiding the backing material into the tufting device, and g) tufting the backing material. A backing material for tufted carpets or filters comprising a first woven or non-woven layer having a second colour different from the first one is also described.
Abstract:
A process to manufacture tufted backing materials comprises the steps of a) providing a roll bearing a backing material which backing material comprises a first side exhibiting a first colour and a second side exhibiting a second colour, wherein the first colour is different from the second colour, the first side is the front side and the second side is the rear side, b) unwinding the backing material from the roll, c) tufting the backing material, d) cutting the backing material at a position between the roll bearing the backing material and the tufting device, e) rotating the roll bearing the backing material by an angle of 180°, f) unwinding the backing material from the roll in a second unwinding direction which is opposite to the first unwinding direction and guiding the backing material into the tufting device, and g) tufting the backing material. A backing material for tufted carpets or filters comprising a first woven or non-woven layer having a second colour different from the first one is also described.
Abstract:
Base cloth for tufted carpet and tufted carpet using the same. The base cloth is constituted by nonwoven fabric made of filament formed of poly lactic acid based polymer. The filament has round cross-section and birefringence of 12null10null3 to 30null10null3 and crystallization degree of 15 to 25 percent by weight. The nonwoven fabric made of filament has heat shrinkage of 1 percent or less at 120null C. in 3 minutes both in a machine direction (MD) and a cross direction thereto (CD). If the cross-section of the filament is not round, the filament has crystallization degree of 15 to 25 percent by weight and heat shrinkage of 1 percent or less at 120null C. in 3 minutes both in MD and CD.
Abstract:
A floor covering is described having a point-bonded nonwoven upper fabric layer and at least one backing layer. The floor covering has excellent abrasion and wear resistance. An antistatic floor covering comprising a point-bonded nonwoven upper fabric layer is also described.
Abstract:
A tufted carpet having a backing which has thereon a plurality of first areas of tufts of fine denier fibers and a plurality of second areas of tufts of at least one looped, uncrimped, coarse denier fiber. Preferred patterns for the areas of tufts are alternating stripes or a checkerboard.
Abstract:
A roofing material including a bitumen or other hot melt coating disposed across a base sheet of stitch-bonded fabric incorporating a blend of standard and bi-component polyester staple fibers stitch-bonded with a plurality of parallel stitch lines of stitching yarn running in the machine direction. The bicomponent fibers may be heat activated and cooled prior to application of the hot melt coating thereby providing dimensional stability.
Abstract:
Disclosure provides a twisted and heat-set Bulked Continuous side-by-side bi-component Filament (BCF) yarn including a plurality of side-by-side bi-component filaments, each includes first and second polymer components. The first polymer component forms a first side of the side-by-side bi-component filaments, and includes polybutylene terephthalate (PBT) in at least 25 and up to 75 volume percent of the filament in the BCF yarn. Further, the second polymer component forms a second side of the side-by-side bi-component filaments, and includes one of polyethylene terephthalate (PET) or polylactic acid (PLA) in at most 75 and down to 25 volume percent of the filament in the BCF yarn. The twisted and heat-set BCF yarn is obtained by a single-step continuous process, and subsequently followed by steps of twisting and/or cabling and heat-setting. The twisted and heat-set BCF yarn as obtained exhibits an elongation to break in a range of 40% to 65%, and floor covering manufactured from the yarn exhibits a Hexapod rating after 12000 cycles of more than 2.