Abstract:
The ionization chamber is defined by a removable block disposed in heat transfer relationship to a temperature controlled mounting block, preferably the removable block comprised of graphite, silicon carbide or aluminum. The ion source includes a mounting flange for joining the ion source to the housing of an ion implanter, the ionization chamber being located on the inside of the mounting flange and the vaporizer being removably mounted to the exterior of the mounting flange via at least one isolation valve which is separable from the mounting flange with the vaporizer, enabling the vaporizer charge volume to be isolated by the valve in closed position during handling, preferably there being two isolation valve in series, one unified with and transportable with a removed vaporizer unit, and one constructed to remain with and isolate the remainder of the ion source from the atmosphere. In certain preferred embodiments, two such vaporizers are provided, enabling one to be absent, while being charged or serviced, while the other operates, or enabling two different materials to be vaporized without maintenance of the ion source, or enabling additional quantities of the same materials to be present to enable a protracted implant run.
Abstract:
An ion doping apparatus includes: a chamber 11; a discharge section 13 for discharging a gaseous content from within the chamber 11; an ion source 12 being provided in the chamber 11 and including an inlet 14 through which to introduce a gas containing an element to be used for doping, the ion source 12 decomposing the gas introduced through the inlet 14 to generate ions containing the element to be used for doping; an acceleration section 23 for pulling out from the ion source 12 the ions generated at the ion source 12 and accelerating the ions toward a target object held in the chamber; and a beam current meter 26 for measuring a beam current caused by the accelerated ions. The beam current is measured by the beam current meter 26 a plurality of times, and if a result of the measurements indicates a stability of the beam current, the ion doping apparatus automatically begins to implant into the target object the ions containing the element to be used for doping. Thus, an ion doping apparatus having excellent doping amount controllability is provided.
Abstract:
A multicharged ions generating source that is easy to manufacture, excellent in controllability and maintainability, high in degree of ionization and large in beam intensity and a charged particle beam apparatus using the same are disclosed. The multicharged ions generating source includes an ion source electrode (3) comprising an electron source (4), a drift tube (5) that constitutes an ion trapping region and a collector (6), a superconducting magnet (11) for ion entrapment, an ion infeed means (20, 22), a first vacuum chamber (2) receiving the ion source electrode (3), a second vacuum chamber (10) receiving the superconducting magnet (11), and a vacuum pumping unit (15, 16) provided for each of the first and second vacuum chambers. The first and the second vacuum chambers (2) and (10) are made removable from each other, and only the ion source electrode (3) to be held at extremely high vacuum can be baked for degassing.
Abstract:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+′ or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
Abstract:
A plasma source which includes a discharge cavity having a first width, where that discharge cavity includes a top portion, a wall portion, and a nozzle disposed on the top portion and extending outwardly therefrom, where the nozzle is formed to include an aperture extending through the top portion and into the discharge cavity, wherein the aperture has a second width, where the second width is less than the first width. The plasma source further includes a power supply, a conduit disposed in the discharge cavity for introducing an ionizable gas therein, and at least one cathode electrode connected to the power supply, where that cathode electrode is capable of supporting at least one magnetron discharge region within the discharge cavity. The plasma source further includes a plurality of magnets disposed adjacent the wall portion, where that plurality of magnets create a null magnetic field point within the discharge cavity.
Abstract:
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.
Abstract:
The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma. Such inductive ionization is enhanced by a relatively slow moving (or nullquasi-staticnull) magnetic field, which promotes resonant ionization and ion beam homogenization.
Abstract:
A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. A flange is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the flange to form a coil. The flange is formed of a material, e.g. quartz, that is essentially transparent to the RF waves. The flange is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.
Abstract:
An ion source is disclosed having an elongated slit for providing a ribbon ion beam for use in an ion implantation system. The source comprises a coaxial inductive coupling antenna for RF excitation of plasma within a cylindrical source housing, as well as circumferential magnets disposed within the housing for generating azimuthal multi-cusped magnetic fields for plasma confinement. Also disclosed is a liner for the housing interior providing thermal barrier between the plasma and the outer housing wall so as to mitigate or reduce condensation within the plasma confinement chamber.
Abstract:
The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma. Such inductive ionization is enhanced by a relatively slow moving (or “quasi-static”) magnetic field, which promotes resonant ionization and ion beam homogenization.