摘要:
A method and system for treating a dielectric film includes exposing at least one surface of the dielectric film to a CxHy containing material, wherein x and y are each integers greater than or equal to a value of unity. The dielectric film can include a low dielectric constant film with or without pores having an etch feature formed therein following dry etch processing. As a result of the etch processing or ashing, exposed surfaces in the feature formed in the dielectric film can become damaged, or activated, leading to retention of contaminants, absorption of moisture, increase in dielectric constant, etc. Damaged surfaces, such as these, are treated by performing at least one of healing these surfaces to, for example, restore the dielectric constant (i.e., decrease the dielectric constant) and cleaning these surfaces to remove contaminants, moisture, or residue. Moreover, preparation for barrier layer and metallization of features in the film may include treating by performing sealing of sidewall surfaces of the feature to close exposed pores and provide a surface for barrier film deposition.
摘要:
A semiconductor device includes a metal wiring provided on a semiconductor substrate. The device further includes an anti-metal diffusion film formed on the metal wiring, a buffer layer which is formed on the anti-metal diffusion film and includes at least a silicon-methyl radical bond and a silicon-oxygen bond, and a low-dielectric constant film layer which is formed on the buffer layer and includes at least the silicon-methyl radical bond and the silicon-oxygen bond, wherein the silicon-methyl radical bonding density of the buffer layer is less than the silicon-methyl radical bonding density of the low-dielectric constant film layer.
摘要:
An insulating film is formed on a semiconductor base material, the insulating film being predominantly composed of organic siloxane and containing an organic component which has no chemical bond to the organic siloxane. Plasma treatment is applied to the insulating film to remove the organic component and form a modifying layer on a surface of the insulating film.
摘要:
A semiconductor structure may be covered with a thermally decomposing film. That film may then be covered by a sealing cover. Subsequently, the thermally decomposing material may be decomposed, forming a cavity.
摘要:
A method of manufacturing a semiconductor device comprises preparing a substrate to be treated, and forming an insulation film above the substrate, which includes applying an insulation film raw material above the substrate, the insulation film raw material including a substance or a precursor of the substance, the insulation film comprising the substance, curing the insulation film raw material by irradiating an electron beam on the substrate while heating the substrate in a reactor chamber, changing at least one of parameter selected from the group consisting of pressure in the reactor chamber, temperature of the substrate, type of gas having the substrate exposed thereto, flow rate of gas introduced into the reactor chamber, position of the substrate, and quantity of electrons incident to the substrate per unit time when the electron beam is being irradiated on the substrate.
摘要:
An interconnect structure including a patterned multilayer of spun-on dielectrics as well as methods for manufacturing the same are provided. The interconnect structure includes a patterned multilayer of spun-on dielectrics formed on a surface of a substrate. The patterned multilayer of spun-on dielectrics is composed of a bottom low-k dielectric, a buried etch stop layer, and a top low-k dielectric, wherein the bottom and top low-k dielectrics have a first composition, the said buried etch stop layer has a second composition which is different from the first composition and the buried etch stop layer is covalently bonded to said top and bottom low-k dielectrics. The interconnect structure further includes a polish stop layer formed on the patterned multilayer of spun-on dielectrics; and metal conductive regions formed within the patterned multilayer of spun-on dielectrics. Covalent bonding is achieved by employing an organosilane having functional groups that are capable of bonding with the top and bottom dielectric layers.
摘要:
A semiconductor device including an insulation film superior in insulation characteristic is obtained. Boron ions are introduced by ion implantation into an organic SOG film with a silicon nitride film formed on the organic SOG film. By this boron implantation, the property of the organic SOG film is modified. The moisture and hydroxyl group included in the film are greatly reduced irrespective of the amount of dose of ions. By using such a layered film of a modified SOG film and a silicon nitride film thereupon as an interlayer insulation film or a passivation film, the water resistance of a semiconductor device can be improved sufficiently.
摘要:
Disclosed are methods of manufacturing electronic devices, particularly integrated circuits. Such methods include the use of low dielectric constant material prepared by using a removable porogen material.
摘要:
Within a method for forming a spin-on-glass (SOG) layer there is first provided a substrate. There is then formed over the substrate a spin-oil-glass (SOG) planarizing layer while employing a silsesquioxane spin-on-glass (SOG) planarizing material. There is then annealed thermally the spin-on-glass (SOG) planarizing layer while employing a first thermal annealing method employing a first gaseous atmosphere comprising a non-oxidizing gas to form a cured spin-on-glass (SOG) planarizing layer. Finally, there is then annealed thermally the cured spin-on-glass (SOG) planarizing layer while employing a second thermal annealing method employing a second gaseous atmosphere comprising an oxidizing gas to form firm the cured spin-on-glass (SOG) planarizing layer an oxidized cured spin-on-glass (SOG) planarizing layer. The oxidized cured spin-on-glass (SOG) planarizing layer when subsequently etched exhibits a more uniform etch profile, and the oxidized cured spin-on-glass (SOG) planarizing layer also exhibits enhanced adhesion to additional layers formed thereupon.
摘要:
The present invention is a method to avoid deterioration of a dielectric characteristic of a dielectric layer having a low dielectric constant (low k) during a stripping process. The method involves first forming a low k dielectric layer on the surface of a substrate of a semiconductor wafer. Then, a patterned photoresist layer is formed over the surface of the low k dielectric layer. The patterned photoresist layer is then used as a hard mask to perform an etching process on the low k dielectric layer. A stripping process is then performed to remove the patterned photoresist layer. Finally, a surface treatment is utilized on the low k dielectric layer to remove Si—OH bonds in the low k dielectric layer so as to avoid moisture absorption of the low k dielectric layer that causes deterioration of the dielectric characteristic.