摘要:
A power converter comprises an input port configured to receive a source of power, an output port configured to provide output power, and a bridge circuit coupled to the input port. The bridge circuit comprises a first switch coupled in series with a second switch, and a third switch coupled in series with a fourth switch. A first clamp rectifier is coupled in series with a second clamp rectifier, and the first and second clamp rectifiers are coupled in parallel with the first and second switches. A first clamp capacitor is coupled between the first and second clamp rectifiers, with the first clamp capacitor operative to reduce power loss in the first and second clamp rectifiers. A first resonant inductor is coupled between the first and second switches. The power converter also includes a transformer operatively coupled to the bridge circuit, with the transformer comprising a primary winding and at least one secondary winding. A current rectifying circuit is operatively coupled to the secondary winding of the transformer and the output port.
摘要:
An embodiment of a power supply includes an input node operable to receive an input voltage, an output node operable to provide a regulated output voltage, an odd number of magnetically coupled phase paths each coupled between the input and output nodes, and a first magnetically uncoupled phase path coupled between the input and output nodes. Such a power supply may improve its efficiency by activating different combinations of the coupled and uncoupled phase paths depending on the load conditions. For example, the power supply may activate only an uncoupled phase path during light-load conditions, may activate only coupled phase paths during moderate-load conditions, and may activate both coupled and uncoupled phase paths during heavy-load conditions and during a step-up load transient.
摘要:
A semiconductor structure comprises a top metal layer, a bond pad formed on the top metal layer, a conductor formed below the top metal layer, and an insulation layer separating the conductor from the top metal layer. The top metal layer includes a sub-layer of relatively stiff material compared to the remaining portion of the top metal layer. The sub-layer of relatively stiff material is configured to distribute stresses over the insulation layer to reduce cracking in the insulation layer.
摘要:
An optoelectronics apparatus selectively drives a light source, and includes four electrically isolated photodetector (PD) segments that detect light that has reflected off an object. Each of the four PD segments produces a corresponding signal, referred to as signals A, B, C and D, indicative of the light detected by the respective PD segment. Circuitry is used to produce a first motion signal indicative of a sum of the signals A plus B minus a sum of the signals C plus D, i.e., the first motion signal is indicative of (A+B)−(C+D). Further circuitry produces a second motion signal indicative of (B+C)−(A+D). Additional circuitry produces a signal and/or data that is indicative of a direction and/or rate of motion of an object, in dependence on the first and second motion signals.
摘要:
Certain embodiments described herein relate to a scanning controller configured produce a horizontal (H) and vertical (V) scanning control signal that is used to control a bi-axial scanning mirror of a scanning laser projector device, a system including such a scanning controller, and a method for generating such an H and V scanning control signal. In an embodiment, the H and V scanning control signal includes H scanning frequency content that is used to control a H scanning frequency of the bi-axial scanning mirror, and V scanning frequency content that is used to control a V scanning frequency of the bi-axial scanning mirror. To avoid cross talk, the scanning controller is configured to produce the H and V scanning control signal such that the H scanning frequency content has a null at DC, and the V scanning frequency content has a null at the H scanning frequency.
摘要:
Provided herein are methods and systems that provide automatic compensation for frequency attenuation of a video signal transmitted over a cable. In accordance with an embodiment, a system includes an equalizer and a compensation controller. The equalizer receives a video signal that was transmitted over a cable, provides compensation for frequency attenuation that occurred during the transmission over the cable, and outputs a compensated video signal. The compensation controller automatically adjusts the compensation provided by the equalizer based on comparisons of one or more portions of the compensated video signal to one or more reference voltage levels. One or more values indicative of one or more levels of compensation provided by the equalizer are stored in memory and/or registers for each time, of a plurality of times. A monitor monitors for changes in the cable and/or the video signal transmitted over the cable based on the stored values. Additionally, the monitor can selectively trigger an alert based on changes in the one or more stored values.
摘要:
Embodiments described herein relate to manufacturing a device. The method includes etching at least one recess pattern in an internal surface of a lead frame, the at least one recess pattern including a perimeter recess that defines a perimeter of a mounting area. The method also includes attaching a component to the internal surface of the lead frame such that a single terminal of the component is attached in the mounting area and the single terminal covers the perimeter recess, wherein the perimeter recess has a size and shape such that the recess is proximate a perimeter of the single terminal.
摘要:
A Buck switching regulator includes first Buck switching regulator circuitry is operable to generate a first output voltage from an input voltage and operable to generate a first sensed voltage having a value that is proportional to an output current being provided by the first Buck switching regulator circuitry. The first Buck switching regulator circuitry receives an input current and operates at a first duty cycle determined by a duty cycle signal. Input current sensing circuitry includes second Buck switching regulator circuitry coupled to the first Buck regulator switching circuitry to receive the duty cycle signal and to receive the first sensed voltage as an input voltage to the second Buck switching regulator circuitry. The second Buck switching regulator circuitry is operable responsive to the duty cycle signal to generate a second output voltage from the first sensed voltage. The second output voltage has a value that is proportional to the input current being supplied to the first Buck switching regulator circuitry. Such a Buck switching regulator can be utilized in a variety of different types of electronic systems, such as laptop computer systems, and can also be used in charging systems in laptop computer and other types of electronic systems.
摘要:
Correcting phase error in a two-channel TIADC system in a manner that is independent of the Nyquist zone(s) occupied by the input signal. In the preferred approach this is done using the gradient of a phase error estimate. The gradient may be determined from a simplified expression of linear regression; the direction of the adaptation is then controlled by the sign of the gradient. The adaptive algorithm converges to the optimal value regardless of the Nyquist zone occupied by the input signal.
摘要:
A phase current sharing network that adjusts operation of a current mode multiphase switching regulator in which the phase current sharing network includes multiple synthetic ripple networks and a current share network. The regulator develops phase currents including ripple currents through corresponding phase inductors as controlled by corresponding pulse control signals. Each synthetic ripple networks develops a corresponding ripple voltage that simulates a corresponding phase ripple current and uses the ripple voltages to develop the pulse control signals. The current share network adjusts each ripple voltage by a combined adjustment value. The combined adjustment value is a combination of phase adjustment values in which each phase adjustment value is based on a difference between a corresponding one of ripple voltage and a reference voltage. Transconductance amplifiers may be used to convert the voltage differences to current adjust values applied to the ripple capacitors developing the ripple voltages.