Abstract:
Acid gas compounds are removed from a process gas such as, for example, syngas or natural gas, by flowing a feed gas into a desulfurization unit to remove a substantial fraction of sulfur compounds from the feed gas and flowing the resulting desulfurized gas into a CO2 removal unit to remove a substantial fraction of CO2 from the desulfurized gas.
Abstract:
A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
Abstract:
Sample monitoring and flow control systems and methods are disclosed for monitoring of airborne particulates. A system may include a particle collection filter. The system also includes a fluid moving device for moving a sample through the particle collection filter. Further, the system includes a light source configured to direct irradiating light towards the particle collection filter. The system also includes a light detector positioned to receive the irradiating light passing through the particle collection filter and configured to generate a signal representative of an amount of the received light. Further, the system includes a controller configured to receive the signal and to control the fluid moving device based on the amount of the received light.
Abstract:
A flexible electronic assembly includes a flexible current-carrying device, an electrically insulating flexible substrate, and an electronic device embedded in the substrate. The electronic device is mounted face-down on the current-carrying device such that a contact side or component side of the electronic device faces the current-carrying device and is positioned at an interface between the current-carrying device and the substrate. The current-carrying device, substrate, and electronic device are co-planar at the interface. This configuration enables the flexible electronic assembly to have an ultra-thin thickness, for example on the order of micrometers.
Abstract:
The invention provides compounds capable of acting as antagonists at cannabanoid receptors according to the following formula: Such compounds may be used to treat conditions for which the cannabinoid receptor system has been implicated, such as obesity, liver disease, diabetes, pain, and inflammation.
Abstract:
The present disclosure relates to delivery and release systems, such as core-shell particles. An exemplary composition according to the disclosure can include a carrier element forming an outer shell that defines an inner core. The core can include a reactive agent that is adapted to react with the shell, particularly at an inner interface of the shell with the core materials. The reaction can provide an inside-out degradation of the shell and release of one or more materials therein. The reactive agent may be separated from the shell, such as using a phase change material (PCM). Upon reaching specific environmental conditions, the PCM can change so as the release the reactive agent for reaction with the shell. The systems can be used in various methods to deliver a material to various environments, including underground reservoirs.
Abstract:
A bioparticle collection device and an aerosol collection system. The bioparticle collection device includes a collection medium including a plurality of fibers formed into a fiber mat and configured to collect bioparticles thereon, and includes a viability enhancing material provider disposed in a vicinity of the plurality of fibers and configured to provide a viability enhancing material to the collected bioparticles to maintain viability of the bioparticles collected by the fiber mat. The aerosol collection system includes an aerosol pumping device configured to entrain particles in an gas stream, an aerosol saturation device configured to saturate the particles in the gas stream with a biocompatible liquid, and an aerosol collection medium downstream from the aerosol saturation device and including a plurality of fibers formed into a fiber mat for collection of the saturated aerosol particles.
Abstract:
The invention provides compounds capable of acting as antagonists at cannabanoid receptors according to the following formula: Such compounds may be used to treat conditions for which the cannabinoid receptor system has been implicated, such as obesity, liver disease, diabetes, pain, and inflammation.
Abstract:
The present disclosure relates to cementitious fluids comprising additives configured to form a permeable cement matrix after curing of the cement. The cementitious fluids can comprise a cementitious medium (e.g., a cement slurry) with a plurality of fibers dispersed therein. The fibers can be hollow, can be porous, and can be degradable. The cementitious fluid particularly can be used in methods of stimulating hydrocarbon bearing formations. Specifically, the cementitious fluid can be injected into the formation to form or enlarge a fracture, and the fluid can be cured to form the permeable cement matrix, said permeability arising from a loosely assembled tubular network and/or passages remaining after degradation of the fibers.