Abstract:
This invention relates to multi purpose shock sensor being used as a vehicle burglar alarm and/or a security system for restricted area, which consists of a cap, a vibration sensing element, a sealed cavity, and a balance weight in the characterized that having a safety cover securely fixed and surrounded with the elastic cap, preparing a gap having a fixing surface and a free surface on inner peripherals of the safety cover, fixing a lid on the safety cover, forming a groove on a peripherals of a balance weight, forming a coupling hole on the center of the cap, and coupling the balance weight into the coupling hole in the top of the cap.
Abstract:
The present invention relates to a pharmaceutical composition for preventing and treating cell proliferative diseases comprising a feather of birds and a scale of fish, a scale transformed from the dermis, a degenerated or cornified variant of a scale, or a scale or horny scale of reptiles as an active ingredient. More particularly, the present invention relates to a pharmaceutical composition for preventing and treating cell proliferative diseases comprising a mixture of 70˜85 weight % of a feather of birds and 15˜30 weight % of a scale of fish, a scale transformed from the dermis, a degenerated or cornified variant of a scale, or a scale or horny scale of reptiles as an active ingredient. The inventive composition has the effect of inhibiting and preventing growth of cancer cells. Accordingly, the inventive composition may be used for anticancer purposes to prevent, ameliorate or treat cancer.
Abstract:
A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.
Abstract:
A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.
Abstract:
The present disclosure relates to a semiconductor device including an oxygen gettering layer between a group III-V compound semiconductor layer and a dielectric layer, and a method of fabricating the semiconductor device. The semiconductor device may include a compound semiconductor layer; a dielectric layer disposed on the compound semiconductor layer; and an oxygen gettering layer interposed between the compound semiconductor layer and the dielectric layer. The oxygen gettering layer includes a material having a higher oxygen affinity than a material of the compound semiconductor layer.
Abstract:
A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.
Abstract:
The present invention relates to a common mode filter and a method of manufacturing the same. In order to implement a common mode filter with low shrinkage, high substrate sintered density, and high strength, the present invention provides a common mode filter including: a lower substrate; an insulating layer having a conductor pattern inside and provided on the lower substrate; an upper substrate provided on the insulating layer; and a ferrite core made of ferrite and provided in the center of the insulating layer, the lower substrate, and the upper substrate by penetrating the insulating layer, the lower substrate, and the upper substrate, and a method of manufacturing the same.
Abstract:
The invention relates to a material for the detection of biological electro-magnetic signals made of a epidermis of a living organism and a diagnostic device using the same, and more particularly, to a material for the detection of biological electro-magnetic signals made of a epidermis of a living organism, through drying is one stage, also selecting is another stage of production, and a diagnostic device using the same. The material of the invention has an effect of detecting biological electro-magnetic signals. Accordingly, the material for the detection of biological electro-magnetic signals of the invention can be used for manufacturing a diagnostic device for detecting biological electro-magnetic signals non-invasively as well as effectively used in diagnosis in cases where biological electro-magnetic signals are changed by cancer, inflammations due to immunodeficiency and so on.
Abstract:
Disclosed herein are a conductor pattern of an electronic component formed in an oval coil shape on a magnetic substrate, the conductor pattern including: a straight part; and a curved part connected to the straight part at both sides thereof, wherein a line width of the curved part is smaller than that of the straight part, and an electronic component including the same. With the conductor pattern and the electronic component including the same according to the present invention, the high precision fine line width and the high resolution conductor pattern may be implemented to improve connectivity, thereby improving characteristics and reliability of the electronic component.
Abstract:
A light emitting device may include a plurality of nano-structures having a strip shape, each including a first nano-structure and a second nano-structure, the first nano-structures being the same height on the buffer layer.