Abstract:
Embodiments of the present disclosure generally relate to methods for forming a high-k gate dielectric in a transistor. The high-k gate dielectric may be formed by introducing a fluorine containing gas into a processing chamber during the deposition of the high-k gate dielectric in the processing chamber. In one embodiment, the high-k gate dielectric is formed by an ALD process in a processing chamber, and a fluorine containing gas is introduced into the processing chamber during one or more stages of the ALD process. Fluorine ions, molecules or radicals from the fluorine containing gas (may be activated by a plasma) can fill the oxygen vacancies in the high-k dielectric.
Abstract:
One or more embodiments described herein generally relate to systems and methods for calibrating an optical emission spectrometer (OES) used for processing semiconductor substrates. In embodiments herein, a light fixture is mounted to a plate within a process chamber. A light source is positioned within the light fixture such that it provides an optical path that projects directly at a window through which the OES looks into the process chamber for its reading. When the light source is on, the OES measures the optical intensity of radiation from the light source. To calibrate the OES, the optical intensity of the light source is compared at two separate times when the light source is on. If the optical intensity of radiation at the first time is different than the optical intensity of radiation at the second time, the OES is modified.
Abstract:
Methods comprising forming a metal oxide film by atomic layer deposition using water as an oxidant are described. The metal oxide film is exposed to a decoupled plasma comprising one or more of He, H2 or O2 to lower the wetch etch rate of the metal oxide film.
Abstract:
A method of selectively and conformally doping semiconductor materials is disclosed. Some embodiments utilize a conformal dopant film deposited selectively on semiconductor materials by thermal decomposition. Some embodiments relate to doping non-line of sight surfaces. Some embodiments relate to methods for forming a highly doped crystalline semiconductor layer.
Abstract:
A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
Abstract:
Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process, or a single-step plasma hydrogenation and nitridization process, is performed on a metal nitride layer in a film stack, thereby, according to some embodiments, removing oxygen atoms disposed within layers of the film stack and, in some embodiments, adding nitrogen atoms to the layers of the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift.
Abstract:
Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
Abstract:
Methods for forming semiconductor devices, such as FinFET devices, are provided. An epitaxial film is formed over a semiconductor fin, and the epitaxial film includes a top surface having two facets and a bottom surface including two facets. A cap layer is deposited on the top surface, and portions of the epitaxial film in a lateral direction are removed by an isotropic plasma etch process. The isotropic plasma etch process may be performed at a pressure ranging from about 5 mTorr to about 200 mTorr in order to maximize the amount of radicals while minimizing the amount of ions in the plasma. Having a smaller lateral dimension prevents the epitaxial film from merging with an adjacent epitaxial film and creates a gap between the epitaxial film and the adjacent epitaxial film.
Abstract:
Methods and apparatus for forming nitrogen-containing layers are provided herein. In some embodiments, a method includes placing a substrate having a first layer disposed thereon on a substrate support of a process chamber; heating the substrate to a first temperature; and exposing the first layer to an RF plasma formed from a process gas comprising ammonia (NH3) to transform the first layer into a nitrogen-containing layer, wherein the plasma has an ion energy of less than about 8 eV.