Abstract:
Embodiments relate to structures, systems and methods for more efficiently and effectively etching sacrificial and other layers in substrates and other structures. In embodiments, a substrate in which a sacrificial layer is to be removed to, e.g., form a cavity comprises an etch dispersion system comprising a trench, channel or other structure in which etch gas or another suitable gas, fluid or substance can flow to penetrate the substrate and remove the sacrificial layer. The trench, channel or other structure can be implemented along with openings or other apertures formed in the substrate, such as proximate one or more edges of the substrate, to even more quickly disperse etch gas or some other substance within the substrate.
Abstract:
Embodiments relate to buried structures for silicon devices which can alter light paths and thereby form light traps. Embodiments of the lights traps can couple more light to a photosensitive surface of the device, rather than reflecting the light or absorbing it more deeply within the device, which can increase efficiency, improve device timing and provide other advantages appreciated by those skilled in the art.
Abstract:
Embodiments relate to buried structures for silicon devices which can alter light paths and thereby form light traps. Embodiments of the lights traps can couple more light to a photosensitive surface of the device, rather than reflecting the light or absorbing it more deeply within the device, which can increase efficiency, improve device timing and provide other advantages appreciated by those skilled in the art.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual points or feet-like elements, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
Abstract:
A method for manufacturing a micromechanical system includes creating a sacrificial layer at a substrate surface. A structural material is deposited at a sacrificial layer surface and at a support structure for later supporting the structural material. At least one hole is created in the structural material extending from an exposed surface of the structural material to the surface of the sacrificial layer. The at least one hole leads to a margin region of the sacrificial layer. The sacrificial layer is removed using a removal process through the at least one hole, to obtain a cavity between the surface of the substrate and the structural material. The method also includes filling the at least one hole and a portion of the cavity beneath the at least one hole close to the cavity. A corresponding micromechanical system and a microelectromechanical transducer are also described.
Abstract:
Embodiments relate to integrated circuit sensors, and more particularly to sensors integrated in an integrated circuit structure and methods for producing the sensors. In an embodiment, a sensor device comprises a substrate; a first trench in the substrate; a first moveable element suspended in the first trench by a first plurality of support elements spaced apart from one another and arranged at a perimeter of the first moveable element; and a first layer arranged on the substrate to seal the first trench, thereby providing a first cavity containing the first moveable element and the first plurality of support elements
Abstract:
According to various embodiments, a method for processing a wafer may include: forming at least one hollow chamber and a support structure within the wafer, the at least one hollow chamber defining a cap region of the carrier located above the at least one hollow chamber and a bottom region of the carrier located below the at least one hollow chamber and an edge region surrounding the cap region of the carrier, wherein a surface area of the cap region is greater than a surface area of the edge region, and wherein the cap region is connected to the bottom region by the support structure; removing the cap region in one piece from the bottom region and the edge region.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.
Abstract:
A method for manufacturing a microelectromechanical systems (MEMS) device, includes forming a cavity in a bulk semiconductor substrate; defining a movably suspended mass in the bulk semiconductor substrate by one or more trenches extending from a main surface area of the bulk semiconductor substrate to the cavity; arranging a cap structure on the main surface area of the bulk semiconductor substrate; and forming a capacitive structure. Forming the capacitive structure includes arranging a first electrode structure on the movably suspended mass; and providing a second electrode structure at the cap structure such that the first electrode structure and the second electrode structure are spaced apart in a direction perpendicular to the main surface area of the bulk semiconductor substrate.