Abstract:
Dynamic bus inversion (DBI) for programmable levels of a ratio of ones and zeros. A transmitting device identifies a number and/or ratio of ones and zeros in a noninverted version of a signal to be transmitted (“noninverted signal”) and a number and/or ratio of ones and zeros in an inverted version of the signal (“inverted signal”). The transmitting device can calculate whether a difference of ones and zeros in the noninverted signal or a difference of ones and zeros in the inverted signal provides a calculated average ratio of ones to zeros closer to a target ratio. The transmitting device sends the signal that achieves provides the calculated average ratio closer to the target ratio.
Abstract:
Described is an apparatus which comprises: an asynchronous clock generator to generate an asynchronous clock signal; a digital sampler for sampling a signal using the asynchronous clock signal; a duty cycle corrector (DCC) to receive a differential input clock and to generate a differential output clock, wherein the digital sampler to sample at least one of an output clock from the differential output clock; and a counter to count output of the digital sampler and to provide a control to the DCC to adjust duty cycle of the differential output clock.
Abstract:
Described is a reconfigurable transmitter which includes: a first pad; a second pad; a first single-ended driver coupled to the first pad; a second single-ended driver to the second pad; a differential driver coupled to the first and second pads; and a logic unit to enable of the first and second single-ended drivers, or to enable the differential driver.
Abstract:
Embodiments of the present disclosure provide apparatuses and systems for proximity communications. The apparatus may include an integrated circuit (IC) package with a central processing unit (CPU) circuit, an input-output (I/O) circuit coupled with the CPU circuit, and a dielectric electromagnetic waveguide coupled with the I/O circuit, to enable communications between the CPU circuit and another apparatus. In another instance, the apparatus may include a plurality of coupler pads disposed on a first surface of the apparatus; and a processor electrically coupled with the coupler pads. One of the coupler pads may form capacitive coupling with one of coupler pads disposed on a second surface of another apparatus, in response to a placement of the first surface in at least partial contact with the second surface, to enable proximity data communication between the processor and the other apparatus. Other embodiments may be described and/or claimed.
Abstract:
Described is an apparatus which comprises: an amplifier; a first set of samplers to sample data output from the amplifier according to a clock signal, the set of samplers to generate an output; and a converter to convert the output of the first set of samplers to 1 -hot encoded data.
Abstract:
Described is an apparatus which comprises: a Variable Gain Amplifier (VGA); a set of samplers to sample data output from the VGA according to a clock signal; and a Clock Data Recovery (CDR) circuit to adjust phase of the clock signal such that magnitude of a first post-cursor signal associated with the sampled data is substantially half of a magnitude of a primary cursor tap associated with the sampled data.
Abstract:
Some embodiments include apparatus and methods having an input to receive an input signal, additional inputs to receive clock signals having different phases to sample the input signal, and a decision feedback equalizer (DFE) having DFE slices. The DFE slices include a number of data comparators to provide data information based on the sampling of the input signal, and a number of phase error comparators to provide phase error information associated with the sampling of the input signal. The number of phase error comparators of the DFE slices is not greater than the number of data comparators of the DFE slices.