摘要:
A semiconductor device includes a semiconductor substrate, a surface electrode formed on the semiconductor substrate, an ineffective region formed to surround the surface electrode, and an ID-indicating portion made of a different material than the surface electrode and formed on the surface electrode to indicate an ID. The area of the ineffective region is smaller than the area of the surface electrode.
摘要:
Second diffusion layers to be guard rings of a second conductivity type are formed on the major surface of a semiconductor substrate of a first conductivity type in a guard ring region. An insulating film is formed on these second diffusion layers. The semiconductor device has a structure wherein a conductive film is formed on the insulating film between adjacent electrodes among a first surface electrode, second surface electrodes, and a third surface electrode.
摘要:
A charge storage layer of first conductive type is formed on the first principal surface of a semiconductor substrate. A base layer of second conductive type is formed on the charge storage layer. Each trench formed through the base layer and the charge storage layer is lined with an insulating film and filled with a trench gate electrode. Dummy trenches are formed on both sides of each trench. Source layers of first conductive type are selectively formed in the surface of the base layer and in contact with the sidewalls of the trenches. The source layers are spaced apart from each other and arranged in the longitudinal direction of the trenches. A contact layer of second conductive type is formed in the surface of the base layer and between each two adjacent source layers arranged in the longitudinal direction of the trenches. A collector layer of second conductive type is formed on the second principal surface of the semiconductor substrate.
摘要:
Second diffusion layers to be guard rings of a second conductivity type are formed on the major surface of a semiconductor substrate of a first conductivity type in a guard ring region. An insulating film is formed on these second diffusion layers. The semiconductor device has a structure wherein a conductive film is formed on the insulating film between adjacent electrodes among a first surface electrode, second surface electrodes, and a third surface electrode.
摘要:
One of the aspects of the present invention is to provide a semiconductor device, which includes a case, and an insulating substrate provided within the case. It also includes a plurality of semiconductor chips mounted on the insulating substrate, each of which has a first chip electrode for receiving a control signal, and a flexible board supported by the case, which includes a body portion and a plurality of lead portions extending from the body portion. Each of the first chip electrodes is electrically connected with the respective one of the lead portions.
摘要:
A power semiconductor module comprises a circuit board made of an insulating substrate of good thermal conductivity formed with interconnect patterns, a plurality of power semiconductor chips mounted on the circuit board, bonding wires for electrically connecting the semiconductor chips and the interconnect patterns, outer lead terminals fixed to the interconnect patterns, and a resin layer for covering at least the chip mounted surface of the circuit board in its entirety so that the tip of each of the outer lead terminals is exposed.
摘要:
A method of manufacturing a low power dissipation semiconductor power device is provided which is easy to perform and suitable for mass production. When a first and second conductivity-type regions are formed on a semiconductor substrate which is selectively irradiated by impurity ions, an excellent super junction is formed by controlling the ion acceleration energy and the width of each irradiated region so that the first and second conductivity-type regions may have a uniform impurity distribution and a uniform width along the direction of irradiation. Another method of manufacturing a low power dissipation semiconductor power device having an excellent super junction is provided which selectively irradiates a collimated neutron beam onto a P+ silicon ingot and forms an N+ region that has a uniform impurity distribution and a uniform width along the direction of irradiation in the P+ silicon ingot.
摘要:
The present invention provides a method of manufacturing a semiconductor device, comprising the steps of selectively diffusing an impurity of a first conductivity type and another impurity of a second conductivity type into a main surface region of a semiconductor substrate so as to form first semiconductor regions of the first conductivity type and second semiconductor regions of the second conductivity type, forming a first semiconductor layer of the second conductivity type on the semiconductor substrate, said first semiconductor layer being of at least a single layer structure, forming element regions of the first and second conductivity types by thermal diffusion of impurities into the first semiconductor layer, and polishing the opposite main surface of the semiconductor substrate to expose the first semiconductor regions of the first conductivity type and the second semiconductor regions of the second conductivity type. The first semiconductor layer may be of a laminate structure consisting of a plurality of semiconductor layers differing from each other in the impurity concentration.
摘要:
A mixture of at least two types of charged particles of ions having the same value obtained by dividing the electric charge of an ion by the mass of the ion, i.e., a mixture of charged particles including hydrogen molecular ions H.sub.2.sup.+ and deuterium ions D.sup.+, is accelerated in a charged particle accelerator. Since the mass spectrograph unit in the accelerator cannot divide the hydrogen molecular ions H.sub.2.sup.+ and the deuterium ion D.sup.+, both ions are accelerated together. When the hydrogen molecular ion H.sub.2.sup.+ collides against a silicon substrate, it is divided into two hydrogen ions 2H.sup.+. Since the hydrogen ion H.sup.+ and the deuterium ion D.sup.+ have different ranges in silicon, two regions including a great number of crystal defects are formed in the silicon substrate in one ion irradiating step. As a result, at least three regions of different lifetimes of carriers are formed at different depths of the semiconductor substrate.