摘要:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
摘要:
An electrostatic chuck 55 has an electrostatic member 100 including a dielectric 115 having a surface 120 adapted to receive the substrate 30. The dielectric 115 covers an electrode 105 that is chargeable to electrostatically hold the substrate 30. A support 190 below the electrostatic member 100 has a cavity 300 adapted to hold a gas to serve as a thermal insulator to regulate the flow of heat from the electrostatic chuck 55 to a surface 120 of the chamber 25. The cavity 300 has a cross-sectional profile that is shaped to provide a predetermined temperature profile across the substrate 30.
摘要:
A process chamber 55 for processing a semiconductor substrate 60 in a plasma, comprises a process gas distributor 100 for distributing process gas into a plasma zone 65 in the chamber. An inductor antenna 135 is used to form an inductive plasma from the process gas in the plasma zone. A primary bias electrode 145 on a ceiling 140 of the chamber 55 has a conducting surface 150 exposed to the plasma zone 65. A dielectric member 155 comprising a power electrode 165 embedded therein, has a receiving surface for receiving a substrate 60. A secondary bias electrode 170 below the dielectric member 155 has a conducting surface 175 exposed to the plasma zone 65. An electrode voltage supply 180 maintains the power electrode 165, primary bias electrode 145, and secondary bias electrode 170, at different electrical potentials to provide a high density, highly directional, plasma in the plasma zone 65 of the chamber 55.
摘要:
A failure resistant electrostatic chuck 20 for holding a substrate 35 during processing of the substrate 35, is described. The chuck 20 comprises a plurality of electrodes 25 covered by an insulator 30, the electrodes 25 capable of electrostatically holding a substrate 35 when a voltage is applied thereto. An electrical power bus 40 has a plurality of output terminals 45 that conduct voltage to the electrodes 25. Fuses 50 electrically connect the electrodes 25 to the output terminals 45 of the power bus 40, each fuse 50 connecting at least one electrode 25 in series to an output terminal from the power bus 40. The fuses 50 are capable of electrically disconnecting the electrode 25 from the output terminals 45 when the insulator 30 punctures and exposes the electrode 25 to the process environment causing a current to flow through the fuse 50. A current detector 175 and electrical counter 180 can be used to provide early detection and counting of the number of failures of the electrodes 25 by detecting the current discharges through the fuses 50.
摘要:
An electrical interconnect structure for connecting a substrate to the next level of packaging or to a semiconductor device. The interconnect structure includes at least two layers of polymeric material, one of the layers having a capture pad and the second of the layers having a bonding pad electrically connected to the capture pad. The bonding pad and the second layer of polymeric material are at the same height so that the bonding pad is level with the second layer of polymeric material. Finally, there is a cap of electrically conducting metallization on the bonding pad and extending beyond the second layer of polymeric material. The cap is of a different composition than the bonding pad.
摘要:
A method of making a multilayer thin film structure on the surface of a dielectric substrate which includes the steps of:a. forming a multilayer thin film structure including the steps of:applying a first layer of dielectric polymeric material on the surface of a dielectric substrate,applying a second layer of dielectric polymeric material over the first layer of polymeric material wherein the second polymeric material is photosensitive,imagewise exposing and developing the second polymeric material to form a feature therein, the second layer feature in communication with at least one feature formed in the first polymeric material; andb. filling the features in the entire multilayer structure simultaneously with conductive material.Preferably, the first layer feature is a via and the second layer feature is a capture pad or wiring channel. Also disclosed is a multilayer thin film structure made by this method.
摘要:
A process for removing organic materials from an article formed from a slurry of glass and/or ceramic particles, resin binder, and a solvent for the resin binder, the process involving including in the slurry a particulate catalyst selected from the group consisting of Cu, Cu.sub.2 O, CuO, Cu.sub.2 SO.sub.4, CuCl.sub.2, Cu organometallic compounds, and mixtures thereof, the catalyst promoting a rapid and complete removal from the shaped article when heated of the organic materials of the slurry.
摘要翻译:一种从由玻璃和/或陶瓷颗粒,树脂粘合剂和树脂粘合剂的溶剂形成的制品中除去有机材料的方法,该方法包括在浆料中包含选自Cu, Cu 2 O,CuO,Cu 2 SO 4,CuCl 2,Cu有机金属化合物及其混合物,催化剂在浆料的有机材料加热时促进快速且完全地从成型制品中除去。
摘要:
Maskless technique for plating a protective metal layer on existing metallurgical pattern supported on a dielectric substrate by blanket coating said metal layer over said substrate, heating to diffuse the metal into said pattern, cooling to spall the metal on the non-patterned portions of the substrate surfaces by the stresses induced from the differences in the thermal contraction differentials between the metal and the substrate, and mechanically removing the metal layer from the non-patterned substrate surfaces. Optionally, the metal layer can also be blanket coated with a passivating metal film with interdiffusion between them at their interface during the noted heating step. In application to support carriers for mounting of semiconductor devices, the substrate will comprise an alumina based ceramic, the pattern will comprise a molybdenum based metal, and the protective metal layer can comprise a nickel based metal. In this application, the second passivating metal film can comprise gold.
摘要:
Large grain polysilicon films can be exfoliated on a handle substrate, such as a glass or glass-ceramic substrate. The large grain polysilicon can have high mobility for device formation, and can be used for backplane of a display or a sensor array for x-ray detection.
摘要:
Large grain polysilicon films can be exfoliated on a handle substrate, such as a glass or glass-ceramic substrate. The large grain polysilicon can have high mobility for device formation, and can be used for backplane of a display or a sensor array for x-ray detection.