Abstract:
Provided are a hybrid laser diode for single mode operation, and a method for manufacturing the hybrid laser diode. The hybrid laser diode includes a silicon layer, an active pattern disposed on the silicon layer, and a bonding layer disposed between the silicon layer and the active pattern. Here, the bonding layer includes diffraction patterns constituting a Bragg grating.
Abstract:
Provided are semiconductor integrated circuits including a grating coupler for optical communication and methods of forming the same. The semiconductor integrated circuit includes: a cladding layer disposed on a semiconductor substrate; a grating coupler including an optical waveguide on the cladding layer and a grating on the optical waveguide; and at least one reflector formed in the cladding layer below the grating.
Abstract:
Disclosed is a surface-emitting laser device which eliminates an absorption loss of a p-type doped layer and reduces a scattering loss in a mirror layer and a carrier loss due to a current induction, comprising a first conductive type of semiconductor substrate; a bottom mirror layer formed on the semiconductor substrate and composed of a first conductive type of semiconductor layer; an active layer formed on the bottom mirror layer; an electron leakage barrier layer formed on the active layer and having an energy gap larger than the active layer; a current induction layer formed on the electron leakage barrier layer and a second conductive type of semiconductor layer; a current extension layer formed on the current induction layer and composed of the second conductive type of semiconductor layer; and a top mirror layer formed on the current extension layer, wherein the top mirror layer includes undoped center portion and its both end having the second conductive type of dopant diffusion region.
Abstract:
A folded cavity laser for generating a laser beam, includes a substrate provided with a distributed Bragg reflector (DBR); an active medium formed above the DBR for amplifying the laser beam; a first and a second mirrors formed on sides of the active medium, respectively, for making a horizontal cavity and for reflecting the amplified laser beam to the DBR; and a microlens, formed on the substrate opposite the DBR, for making the amplified laser beam astigmatic after passing therethrough.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
A semiconductor optical device includes a first mode converting core, a light amplification core, a second mode converting core, and a light modulation core disposed in a first mode converting region, a light amplification region, a second mode converting region, and a light modulating region of a semiconductor substrate, respectively, and a current blocking section covering at least sidewalls and a top surface of the light amplification core. The first mode converting core, the light amplification core, the second mode converting core, and the light modulation core are arranged along one direction in the order named, and are connected to each other in butt joints. The current blocking section includes first, second, and third cladding patterns sequentially stacked. The second cladding pattern is doped with dopants of a first conductivity type, and the first and third cladding patterns are doped with dopants of a second conductivity type.
Abstract:
Disclosed is a light generating device which comprises a first reflective semiconductor optical amplifier emitting a first light along a first direction, a second reflective semiconductor optical amplifier emitting the second light in a direction opposite to the first direction, an optical distributer reflecting a part of an incident light and to pass the remaining of the incident light, and an optical comb filter passing a wavelength component of a specific period.
Abstract:
Provided is a semiconductor and a method for forming the same. The method includes forming a buried insulating layer locally in a substrate. The substrate is etched to form an opening exposing the buried insulating layer, and a silicon pattern spaced in at least one direction from the substrate is formed on the buried insulating layer. A first insulating layer is formed to enclose the silicon pattern.
Abstract:
Provided are semiconductor integrated circuits including a grating coupler for optical communication and methods of forming the same. The semiconductor integrated circuit includes: a cladding layer disposed on a semiconductor substrate; a grating coupler including an optical waveguide on the cladding layer and a grating on the optical waveguide; and at least one reflector formed in the cladding layer below the grating.
Abstract:
Provided are a semiconductor optical amplifier and an optical signal processing method using the same. The reflective semiconductor optical amplifier includes: an optical signal amplification region operating to allow a downward optical signal incident from the external to obtain a gain; and an optical signal modulation region connected to the optical signal amplification region and generating a modulated optical signal. The downward optical signal is amplified through a cross gain modulation using the modulated optical signal and is outputted as an upward optical signal.