Abstract:
A light emitting diode chip includes: a first conductive type semiconductor layer disposed on a substrate; a mesa disposed on the first conductive type semiconductor layer and including an active layer and a second conductive type semiconductor layer; at least one groove disposed on a side surface of the mesa forming a concave region; an extension electrode forming ohmic contact with the first conductive type semiconductor layer in the concave region; an insulation layer covering the extension electrode, the first conductive type semiconductor layer, and the mesa, and including at least one first opening exposing the extension electrode and a second opening; a first pad electrode disposed on the insulation layer and electrically connected to the first conductive type semiconductor layer through the first opening; and a second pad electrode disposed on the insulation layer and electrically connected to the second conductive type semiconductor layer through the second opening.
Abstract:
Disclosed herein is an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer; a first electrode pad located on the second conductive type semiconductor layer opposite to the first conductive type semiconductor layer; a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer; a second electrode pad electrically connected to the second conductive type semiconductor layer; and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.
Abstract:
A light-emitting diode (LED) including a semiconductor stack structure including a first semiconductor layer, an active layer, and a second semiconductor layer, the semiconductor stack disposed on a substrate, a conductive substrate disposed on the semiconductor stack structure, and an electrode disposed on the conductive substrate and in ohmic contact with the conductive substrate, wherein the electrode comprises grooves penetrating the electrode and a portion of the conductive substrate.
Abstract:
According to the present invention, a light-emitting diode with improved light extraction efficiency comprises: a semiconductor laminated structure including an N-layer, a light-emitting layer, and a P-layer formed on a substrate; an N-type electrode formed on the N-layer; and a P-type electrode formed on the P-layer, wherein the N-type electrode and the P-type electrode include a pad electrode and a dispersion electrode, and the N-type electrode and/or the P-type electrode includes a reflective electrode layer for reflecting light onto the dispersion electrode. Thus, the light-emitting diode has a reflective electrode layer on the electrode so as to improve light extraction efficiency. Further, a reflective layer is patterned beneath a pad unit, thus forming roughness and improving adhesion.
Abstract:
Exemplary embodiments of the present invention disclose a light-emitting diode (LED) including a semiconductor stack structure including a first semiconductor layer, an active layer, and a second semiconductor layer, the semiconductor stack disposed on a substrate, a conductive substrate disposed on the semiconductor stack structure, and an electrode disposed on the conductive substrate and in ohmic contact with the conductive substrate, wherein the electrode comprises grooves penetrating the electrode and a portion of the conductive substrate.
Abstract:
A light-emitting diode includes a substrate, and a light-emitting structure disposed on the substrate. The light-emitting structure includes a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A transparent electrode layer including concave portions and convex portions is disposed on the second conductivity-type semiconductor layer. Micro-lenses are disposed on the transparent electrode layer and completely cover the concave portions, and only partially cover the convex portions that are disposed between the micro-lenses.
Abstract:
A light-emitting element according to an embodiment of the present document has a transparent electrode having an opening, and the transparent electrode has a protrusion on a side surface of the opening. A second electrode pad is arranged on the opening of the transparent electrode, and abuts the protrusion. Accordingly, peeling of the second electrode pad can be prevented, thereby improving the reliability of the light-emitting element.
Abstract:
The light emitting element is provided to comprise: a first conductive type semiconductor layer; a mesa; a current blocking layer; a transparent electrode; a first electrode pad and a first electrode extension; a second electrode pad and a second electrode extension; and an insulation layer partially located on the lower portion of the first electrode, wherein the mesa includes at least one groove formed on a side thereof, the first conductive type semiconductor layer is partially exposed through the groove, the insulation layer includes an opening through which the exposed first conductive type semiconductor layer is at least partially exposed, the first electrode extension includes extension contact portions in contact with the first conductive type semiconductor layer through an opening, and the second electrode extension includes an end with a width different from the average width of the second electrode extension.
Abstract:
A light emitting diode chip includes: a first conductive type semiconductor layer disposed on a substrate; a mesa disposed on the first conductive type semiconductor layer and including an active layer and a second conductive type semiconductor layer; at least one groove disposed on a side surface of the mesa forming a concave region; an extension electrode forming ohmic contact with the first conductive type semiconductor layer in the concave region; an insulation layer covering the extension electrode, the first conductive type semiconductor layer, and the mesa, and including at least one first opening exposing the extension electrode and a second opening; a first pad electrode disposed on the insulation layer and electrically connected to the first conductive type semiconductor layer through the first opening; and a second pad electrode disposed on the insulation layer and electrically connected to the second conductive type semiconductor layer through the second opening.
Abstract:
A light emitting diode chip includes: a first conductive type semiconductor layer disposed on a substrate; a mesa disposed on the first conductive type semiconductor layer and including an active layer and a second conductive type semiconductor layer; at least one groove disposed on a side surface of the mesa forming a concave region; an extension electrode forming ohmic contact with the first conductive type semiconductor layer in the concave region; an insulation layer covering the extension electrode, the first conductive type semiconductor layer, and the mesa, and including at least one first opening exposing the extension electrode and a second opening; a first pad electrode disposed on the insulation layer and electrically connected to the first conductive type semiconductor layer through the first opening; and a second pad electrode disposed on the insulation layer and electrically connected to the second conductive type semiconductor layer through the second opening.