PROCESS FOR ADJUSTING THE SIZE AND SHAPE OF NANOSTRUCTURES
    32.
    发明申请
    PROCESS FOR ADJUSTING THE SIZE AND SHAPE OF NANOSTRUCTURES 有权
    调整纳米尺寸和形状的过程

    公开(公告)号:US20100081282A1

    公开(公告)日:2010-04-01

    申请号:US12435219

    申请日:2009-05-04

    摘要: In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.

    摘要翻译: 根据本发明,通过为装置提供软或软化的暴露表面的步骤来减小或调节微量元件在基片上的横向尺寸; 将引导板放置在软或软化的暴露表面附近; 并将引导板压在暴露的表面上。 在压力下,软材料在导向板和基板之间横向流动。 这种压力诱导的流动可以减小线间距的横向尺寸或孔的尺寸并增加台面的尺寸。 相同的过程也可以修复诸如线边缘粗糙度和倾斜侧壁的缺陷。 该方法在本文中将被称为通过液化或P-SPEL的压制自我完善。

    Method for filling of nanoscale holes and trenches and for planarizing of a wafer surface
    35.
    发明授权
    Method for filling of nanoscale holes and trenches and for planarizing of a wafer surface 有权
    用于填充纳米级孔和沟槽以及用于平坦化晶片表面的方法

    公开(公告)号:US07510946B2

    公开(公告)日:2009-03-31

    申请号:US11533323

    申请日:2006-09-19

    IPC分类号: H01L21/3105

    摘要: A processing method for use in the fabrication of fabrication of nanoscale electronic, optical, magnetic, biological, and fluidic devices and structures, for filling nanoscale holes and trenches, for planarizing a wafer surface, or for achieving both filling and planarizing of a wafer surface simultaneously. The method has the initial step of depositing a layer of a meltable material on a wafer surface. The material is then pressed using a transparent mold while shining a light pulse through the transparent mold to melt the deposited layer of meltable material. A flow of the molten layer material fills the holes and trenches, and conforms to surface features on the transparent mold. The transparent mold is subsequently removed.

    摘要翻译: 一种用于制造纳米尺度电子,光学,磁性,生物和流体装置和结构的处理方法,用于填充纳米尺度的孔和沟槽,用于平坦化晶片表面,或用于实现晶片表面的填充和平面化 同时。 该方法具有在晶片表面上沉积可熔材料层的初始步骤。 然后使用透明模具压制材料,同时通过透明模具照射光脉冲以熔化可熔化材料的沉积层。 熔融层材料的流动填充孔和沟槽,并符合透明模具上的表面特征。 随后去除透明模具。

    Articles Comprising Nanoscale Patterns With Reduced Edge Roughness and Methods of Making Same
    37.
    发明申请
    Articles Comprising Nanoscale Patterns With Reduced Edge Roughness and Methods of Making Same 审中-公开
    包括具有降低边缘粗糙度的纳米尺度图案的文章及其制作方法

    公开(公告)号:US20080230947A1

    公开(公告)日:2008-09-25

    申请号:US12034478

    申请日:2008-02-20

    IPC分类号: B29C59/02

    摘要: In accordance with the invention, an article comprising a nanoscale surface pattern, such as a grating, is provided with a nanoscale patterns of reduced edge and/or sidewall roughness. Smooth featured articles, can be fabricated by nanoimprint lithography using a mold having sloped profile molding features. Another approach uses a mold especially fabricated to provide smooth sidewalls of reduced roughness, and a third approach adds a post-imprint smoothing step. These approaches can be utilized individually or in various combinations to make the novel articles.

    摘要翻译: 根据本发明,包括纳米尺度表面图案(例如光栅)的制品被提供有减小的边缘和/或侧壁粗糙度的纳米级图案。 光滑的特色文章,可以使用具有倾斜型材成型特征的模具通过纳米压印光刻制造。 另一种方法使用特别制造的模具来提供具有减小的粗糙度的平滑侧壁,并且第三种方法增加了后压印平滑步骤。 这些方法可以单独使用或以各种组合来制造新型物品。

    Laser assisted direct imprint lithography
    39.
    发明授权
    Laser assisted direct imprint lithography 有权
    激光辅助直接压印光刻

    公开(公告)号:US07211214B2

    公开(公告)日:2007-05-01

    申请号:US10390406

    申请日:2003-03-17

    申请人: Stephen Y. Chou

    发明人: Stephen Y. Chou

    IPC分类号: B29C59/16

    摘要: In accordance with the invention, features can be directly imprinted into the surface of a solid substrate. Specifically, a substrate is directly imprinted with a desired pattern by the steps of providing a mold having a molding surface to imprint the pattern, disposing the molding surface adjacent or against the substrate surface to be imprinted, and irradiating the substrate surface with radiation to soften or liquefy the surface. The molding surface is pressed into the softened or liquefied surface to directly imprint the substrate. The substrate can be any one of a wide variety of solid materials such as semiconductors, metals, or polymers. In a preferred embodiment the substrate is silicon, the laser is a UV laser, and the mold is transparent to the UV radiation to permit irradiation of the silicon workpiece through the transparent mold. Using this method, applicants have directly imprinted into silicon large area patterns with sub-10 nanometer resolution in sub-250 nanosecond processing time. The method can also be used with a flat molding surface to planarize the substrate.

    摘要翻译: 根据本发明,特征可以直接印刷到固体基材的表面中。 具体而言,通过提供具有模制表面的模具来压印图案,将模制表面邻近或抵靠待印刷的基板表面设置,并且用辐射来照射基板表面以软化基板,直接印刷所需的图案 或使表面液化。 将模制表面压入软化或液化的表面以直接印刷基材。 基材可以是各种固体材料如半导体,金属或聚合物中的任何一种。 在优选实施例中,衬底是硅,激光是UV激光,并且模具对UV辐射是透明的,以允许硅工件通过透明模具照射。 使用这种方法,申请人直接印刷到亚250纳秒处理时间内具有亚10纳米分辨率的硅大面积图案。 该方法还可以与平坦的成型表面一起使用以平坦化基底。

    Fluid pressure bonding
    40.
    发明授权
    Fluid pressure bonding 有权
    流体压力粘合

    公开(公告)号:US06946360B2

    公开(公告)日:2005-09-20

    申请号:US10161776

    申请日:2002-06-04

    申请人: Stephen Y. Chou

    发明人: Stephen Y. Chou

    摘要: An improved method of bonding involves using direct fluid pressure to press together the layers to be bonded. Advantageously one or more of the layers are sufficiently flexible to provide wide area contact under the fluid pressure. Fluid pressing can be accomplished by sealing an assembly of layers to be bonded and disposing the assembly in a pressurized chamber. It can also be accomplished by subjecting the assembly to jets of pressurized fluid. The result of this fluid pressing is reduction of voids and enhanced uniformity over an enlarged area.

    摘要翻译: 改进的粘合方法包括使用直接流体压力将待粘合的层压在一起。 有利地,一个或多个层具有足够的柔性以在流体压力下提供广泛的面积接触。 流体压制可以通过密封要结合的层的组件并将组件设置在加压室中来实现。 也可以通过使组件经受加压流体的喷射来实现。 这种流体压制的结果是在扩大的面积上减小了空隙并提高了均匀性。