摘要:
The present invention is a mixture comprising by weight 0.01 to 30% of at least one medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials or silicoaluminate mesoporous molecular sieves (co-catalyst) (A) for respectively 99.99 to 70% of at least a MeAPO molecular sieve.Preferably the proportion of (A) is 1 to 15% for respectively 99 to 85% of MeAPO molecular sieves.MeAPO molecular sieves having CHA (SAPO-34) or AEI (SAPO-18) structure or mixture thereof are the most preferable. Si is the most desirable metal in MeAPO.The present invention also relates to catalysts consisting of the above mixture or comprising the above mixture.The present invention also relates to a process (hereunder referred as “XTO process”) for making an olefin product from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock wherein said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock is contacted with the above catalyst (in the XTO reactor) under conditions effective to convert the oxygen-containing, halogenide-containing or sulphur-containing organic feedstock to olefin products (the XTO reactor effluent).The present invention also relates to a process (hereunder referred as “combined XTO and OCP process”) to make light olefins from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising:contacting said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the above catalyst at conditions effective to convert at least a portion of the feedstock to form an XTO reactor effluent comprising light olefins and a heavy hydrocarbon fraction; separating said light olefins from said heavy hydrocarbon fraction; contacting said heavy hydrocarbon fraction in the OCP reactor at conditions effective to convert at least a portion of said heavy hydrocarbon fraction to light olefins.
摘要:
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
摘要:
A molecular sieve comprises at least one intergrown phase of an AFX framework-type molecular sieve and a CHA framework-type molecular sieve and is conveniently synthesized using a combination of N,N,N′N′-tetramethylhexane-1,6-diamine and N,N-dimethylcyclohexylamine as organic directing agents.
摘要:
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
摘要:
Novel silicoaluminophosphate molecular sieve compositions comprising SAPO-11 and SAPO-41 with at least about 5 wt % of in situ-produced amorphous portion. Such compositions can be uncalcined or calcined and novel processes for their preparation are described. These compositions, when loaded or impregnated with a catalytically active species such as a Group VIII noble metal are novel, and are excellent hydroisomerization catalysts.
摘要:
A process for manufacturing a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of AEI and CHA framework types, the process comprising the steps of (a) combining at least one silicon source, at least one phosphorus source, at least one aluminum source, and at least one structure-directing-agent (R) to form a mixture; and (b) treating the mixture at crystallization conditions sufficient to form the silicoaluminophosphate molecular sieve, wherein the mixture prepared in step (a) has a molar composition of: (n)SiO2/Al2O3/(m)P2O5/(x)R/(y)H2O wherein n ranges from about 0.005 to about 0.6, m ranges from about 0.6 to about 1.2, x ranges from about 0.5 to about 0.99, and y ranges from about 10 to about 40.
摘要翻译:一种制备含有至少一种AEI和CHA骨架类型的共生相的硅铝磷酸盐分子筛的方法,该方法包括以下步骤:(a)将至少一种硅源,至少一种磷源,至少一种铝源和 至少一种结构导向剂(R)以形成混合物; (b)在足以形成硅铝磷酸盐分子筛的结晶条件下处理混合物,其中步骤(a)中制备的混合物的摩尔组成为:(n)SiO 2 / Al 2 O 3 /(m)P 2 O 5 /(x)R / (y)H 2 O,其中n为约0.005至约0.6,m为约0.6至约1.2,x为约0.5至约0.99,y为约10至约40。
摘要:
A method for determining an amount of flocculant effective to recover a molecular sieve crystalline product that comprises the steps of (a) preparing a molecular sieve crystalline product mixture; (b) separating the molecular sieve crystalline product mixture into a plurality of samples; (c) mixing at least two of the plurality of samples with a quantity of flocculant to produce a plurality of flocculated samples, wherein at least two of the plurality of flocculated samples have a different ratio of flocculant to molecular sieve crystalline product mixture; (d) measuring the viscosity or zeta potential of at least two of the plurality of flocculated samples having a different ratio of flocculant to molecular sieve crystalline product mixture; (e) establishing a relationship between the quantity of flocculant and the viscosity or zeta potential measurements; and (f) determining from the relationship the amount of flocculant effective to recover the molecular sieve crystalline product.
摘要:
The present invention provides a fluidized catalytic process for production of dimethyl ether from methanol, wherein said process is carried out in a reactor in which the catalyst is in a fluidized state. Said process comprises the following steps of (1) feeding the methanol feedstock via two or more locations selected from the bottom, lower part, middle part and upper part of the reactor, contacting with the catalyst for preparation of dimethyl ether by methanol dehydration, carrying out the reaction of preparing dimethyl ether by methanol dehydration to obtain the reaction stream, separating said reaction stream to obtain a coked catalyst and a crude product primarily containing the target product, i.e. dimethyl ether; (2) totally or partially feeding the coked catalyst obtained in step (1) into a regenerator in a continuous or batch manner for regeneration via coke-burning, the regenerated catalyst being directly recycled to step (1) after being totally or partially cooled.
摘要:
The subject invention comprises a novel UZM-14 catalytic material comprising globular aggregates of crystallites having a MOR framework type with a mean crystallite length parallel to the direction of 12-ring channels of about 60 nm or less and a mesopore volume of at least about 0.10 cc/gram. Catalysts formed from the novel material are particularly effective for the transalkylation of aromatics.
摘要翻译:本发明包括一种新型的UZM-14催化材料,其包含具有MOR骨架型晶粒的球形聚集体,其平均微晶长度平行于约60nm或更小的12环通道的方向,中孔体积为至少约0.10 cc /克。 由新型材料形成的催化剂对于芳族化合物的烷基转移特别有效。
摘要:
The present invention provides a catalyst and a process for its preparation and its use in cracking heavy feedstocks. The catalyst comprises one or more zeolites having a controlled silica to alumina ratio and preferably treated with alkali in the presence of a matrix component selected from the group consisting of clays, synthetic matrix other than pillared clay, and mixtures thereof. The catalyst are particularly useful in treating heavy feedstock such as residues from oil sands processing.