Abstract:
Disclosed is a slot die coater adjusting device, which adjusts a slot die coater including a lower die having a lower discharge hole for discharging a first active material slurry and an upper die having an upper discharge hole for discharging a second active material slurry, to adjust a distance between the lower discharge hole and the upper discharge hole by allowing the upper die to move. The slot die coater adjusting device includes pressing block assemblies respectively provided to both longitudinal sides of the slot die coater and fixed to the upper die; a linear motion (LM) guide disposed at a lower portion of the pressing block assembly and connected to the pressing block assembly to guide a movement of the pressing block assembly; a servo motor configured to give a power for moving the LM guide; and a reducer connected between the servo motor and the LM guide.
Abstract:
The present disclosure is directed to opposables including a body having a plurality of cavities disposed therein. Each cavity can be designed to contain one or more reagents, liquids, or fluids which may be applied to a specimen-bearing surface. In some embodiments, the cavities include one or more reagent chambers, the reagent chambers can have one or more seals such that the reagents, liquids, or fluids contained therein may be stored and released to the specimen-bearing surface.
Abstract:
Disclosed herein is a printed circuit board having a structure for preventing coating liquid overflow. In the printed circuit board on which an electronic component is mounted and in which a connection hole for joining the electronic component and another component to each other is formed, a land region to which lead may be applied is formed adjacent to the connection hole.
Abstract:
A cap for an additive manufacturing recoater rake includes a clip portion defining a slot configured to receive a side edge portion of a recoater rake, and an angled surface extending from the clip portion. The angled surface is configured to contain powder pushed by the recoater rake on the powder bed.
Abstract:
A method of manufacturing a plurality of secondary containment panels and assembling and installing the panels in a secondary containment system of an above-ground liquid storage tank or other retention facility includes forming a plurality of flexible substrate pieces. A liquid impermeable coating is applied to the upper surface of each piece such that an edge segment of the piece remains uncoated. The coating is applied to the substrate piece in an indoor enclosure using a computer controlled robotic sprayer that applies a uniform coating. Metal plates are embedded in the floor used for quality control testing of the coating thickness using magnetic gauges. At least a pair of the pieces are juxtaposed relative to one another such that a first one of the pieces overlaps the uncoated segment of the second piece to form a seam.
Abstract:
Various embodiments relate to application of a fluid to a substrate. The fluid is locally heated, for example, to obtain a desired thickness profile.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes dispensing a liquid on a wafer. The method includes raising the wafer. The method includes lowering the wafer after the raising. The wafer is spun as it is lowered, thereby removing at least a portion of the liquid from the wafer. The present disclosure also provides an apparatus for fabricating a semiconductor device. The apparatus includes a wafer chuck that is operable to hold a semiconductor wafer and secure the wafer thereto. The wafer has a front surface and a back surface. The apparatus includes a dispenser that is operable to dispense a liquid to the front surface of the wafer. The apparatus includes a mechanical structure that is operable to: spin the wafer chuck in a horizontal direction; and move the wafer chuck downwards in a vertical direction while the wafer chuck is being rotated.
Abstract:
A method of coating a substrate with a liquid comprising a catalyst component, which substrate comprises a plurality of channels, wherein the method comprises: (a) holding the substrate vertically; (b) introducing the liquid into the substrate through the open ends of the channels at a lower end of the substrate; and (c) after the lower end of the substrate has been part-filled with the liquid, applying a vacuum to the open ends of the channels at the upper end of the substrate while introducing the liquid into the substrate.
Abstract:
A method of manufacturing a multilayer coating for decoration of surfaces includes the successive steps of providing a supporting substrate, applying a protective layer on that substrate, applying at least one first decorative layer on the protective layer to transfer a first ornamental patter thereto, depositing at least one adhesive layer on the first decorative layer to form a multilayer coating configured to be applied on a surface to be decorated. The substrate is a film of a polymeric material configured to be removed from the protective layer after application of the multilayer coating on the surface to be decorated. A system of manufacturing a multilayer coating for the decoration of surfaces.
Abstract:
Workpieces, which are conveyed by a conveying device along a conveying path, are heated by a heating and degreasing coil. Then, resin powder is downwardly sprayed from a nozzle of a coating device to each corresponding one of the workpieces, which are conveyed by the conveying device. The workpieces are thereafter heated by a heating and curing coil. At each of the heating coils, a dummy member, which is made of an electrically conductive material, is displaced from a retracted position to a forward position, which is located between the corresponding heating coil and a corresponding adjacent part of the conveying path of the conveying device, when an empty one of mount locations of the conveying device reaches the forward position of the dummy member.