摘要:
A method to obtain contamination free surfaces of a material chosen from the group comprising GaAs, GaAlAs, InGaAs, InGaAsP and InGaAs at crystal mirror facets for GaAs based laser cavities. The crystal mirrors facets are cleaved out exposed to an ambient atmosphere containing a material from the group comprising air, dry air, or dry nitrogen ambients. Any oxides and other foreign contaminants obtained during the ambient atmosphere exposure of the mirror facets are removed by dry etching in vacuum. Thereafter, a native nitride layer is grown on the mirror facets by treating them with nitrogen.
摘要:
A method of fabricating a semiconductor laser device includes the steps of forming semiconductor layers composed of a first conductive type cladding layer, an active layer, and a second conductive type cladding layer on a substrate, and peeling a device formation region of the semiconductor layers from the substrate and simultaneously forming a resonance mirror on an end portion of the device formation region by irradiating the device formation region with energy beams traveling from the back surface side of the substrate. With this configuration, it is possible to peel a device from a substrate and also form a flat resonance mirror with less damage of crystal by laser abrasion, and further to easily form a high quality resonance mirror without increasing the number of fabrication steps.
摘要:
As a method for manufacturing a laser diode using a group III nitride compound semiconductor, independent dry etching process for forming electrodes and mirror facets are adopted. A portion of an upper semiconductor layer is etched for forming a window. An electrode for a lower semiconductor layer is formed through the window. After electrodes are formed, then, etching is carried out for forming mirror facets of laser cavity. This method realizes high oscillation, because the method enhances parallel and vertical degrees of the mirror facets. Further, cleanness of the mirror facets are improved, because they are formed after the electrodes are formed. The method further lowers resistivity of lower semiconductor layer, because its thickness can be controlled easily without etching excessively. As a result, luminous efficiency is improved.
摘要:
A semiconductor laser diode having a selective PHS structure includes a semiconductor substrate having opposite first and second main surfaces, a laser diode structure disposed on the first main surface, and a PHS electrode selectively buried in the second main surface wherein the laser diode structure is located in an area defined by a first pair of parallel lines running in a direction perpendicular to a resonator length direction and a second pair of parallel lines located at the side surfaces of the semiconductor substrate, the first pair of lines being located internally of front and rear facets of the semiconductor substrate, and the PHS electrode has a length in the resonator length direction no shorter than the active region in the resonator length direction. The heat radiating characteristic is improved, especially at the laser beam emitting facet.
摘要:
In a semiconductor laser element which has a semiconductor block including a first end surface, a second end surface opposite to the first end surface, and a principal surface contiguous to the first and the second end surfaces, the internal end surface is defined by forming a groove from the principal surface, creating an internal end surface opposite to the second end surface and nearer to the second end surface than the first end surface is. The internal end surface serves as a front laser beam emitting surface while the second end surface serves as a rear laser beam emitting surface. Thus, an optical resonator is provided between the internal and the second end surfaces. The internal end surface is spaced apart from the second end surface by a length of 150 .mu.m, which is different from a length of the semiconductor block.
摘要:
A semiconductor laser including a compound semiconductor substrate of an n-type, a semiconductor laser chip region defined at a center portion of an upper portion of the compound semiconductor substrate and provided at its front and rear surfaces with mirror surfaces for oscillating laser beams, and a pair of guide regions defined at opposite sides of the chip region, respectively, to be in contact with the semiconductor laser chip region. The chip region has a shape of a hexahedron. Together with the front and rear surfaces of the chip region, the guide regions define a cavity for coupling the chip region with external elements at the compound semiconductor substrate. The semiconductor laser also includes a first electrode formed over the chip region and guide regions and adapted to receive an electric power for generating laser beams and a second electrode formed beneath the semiconductor substrate and adapted to receive the electric power for generating laser beams, together with the first electrode.
摘要:
A method for cleaving semiconductor devices along planes accurately positioned. Resist is applied to a major surface of the semiconductor device and a mask is projected upon the resist covered major surface. The mask is opaque in those regions in which no cleave is desired. Following the exposure of the resist, the removal of the mask and the development of the resist, an ion beam is positioned incident upon the semiconductor surface such that ion beam etching occurs in the areas in which no resist covers the semiconductor structure. Once a sufficient depth is etched in the areas not covered with resist such that the strength of the semiconductor structure in those areas is significantly less than in those areas covered by resist, the ion beam etching process is ended and the resist is stripped from the semiconductor structure. Subsequently, force is applied within the area in which the ion beam etching occurred to cleave the semiconductor structure within that region. Such cleaving may occur either prior or subsequent to etching of facets for the semiconductor devices.
摘要:
A surface-emitting semiconductor injection laser for use in fabricating high-power two-dimensional monolithic laser arrays. The surface-emitting semiconductor laser includes a substrate and an active layer and a pair of cladding layers formed on the substrate. A folded resonator cavity is formed by highly-reflective 45.degree. and 90.degree. micromirrors that are etched at either end of the active layer and by a partially-reflective reflector that is positioned between the 45.degree. micromirror and the substrate for outcoupling the laser light from the resonator cavity. The semiconductor laser is mounted junction down on a heat sink to position the active layer close to the heat sink for good heat dissipation at high power levels. In one preferred embodiment of the present invention, the substrate is optically opaque and an opening is etched in the substrate for outcoupling the laser light. In another preferred embodiment of the invention, the substrate is optically transparent and a microlens is formed on the substrate to collimate the laser light.
摘要:
A method, and device produced therewith, for improving the planarity of etched mirror facets 18 of integrated optic structures with non-planar stripe waveguides, such as ridge or groove diode lasers or passive devices such as modulators and switches. The curvature of the mirror facet surface at the edges of the waveguide due to topographical, lithographical and etch process effects, causes detrimental phase distortions, and is avoided by widening the waveguide end near the mirror surface thereby shifting the curved facet regions away from the light mode region to surface regions where curvature is not critical.
摘要:
A semiconductor laser apparatus includes: a semiconductor laser device for junction down mounting that includes a first light-emitting device region and a second light-emitting device region formed separately on a substrate. The first light-emitting device region and the second light-emitting device region in the semiconductor laser device each have a stack structure in which an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are stacked in stated order. The first light-emitting device region includes a first electrode film located on the n-type semiconductor layer. The second light-emitting device region includes a second electrode film located on the p-type semiconductor layer. The first electrode film and the second electrode film are electrically connected to each other.