Abstract:
A substrate pad for soldering at least one self-aligning component thereon, wherein at least one edge of a body of the substrate pad is shaped to conform to a corresponding edge of a component pad, and the at least one edge of the body of the substrate pad further include a plurality of pad fingers leading away from the substrate pad. Related apparatus and methods are also described.
Abstract:
A multilayer printed circuit as well as printed passive and active electronic components using additive printing technology is provided. The fabrication process includes a substrate and a first conductive layer that is printed with conductive ink on the substrate. An insulation layer that has uniform thickness is printed on the first conductive layer and the substrate, less via cavities, test point cavities, and a surface mount component contact point and mounting cavities. The insulation layer is replaceable with resistive layer or semi-conductive layer to fabricate electronic components. The vias are printed with conductive ink inside of the via cavities. Additionally, a second conductive layer is printed on the vias and over the insulation layer. The insulation, resistive, or semi-conducting layer, the vias, and the conductive layers are repeatedly printed in sequence to thus form the multilayer printed circuit.
Abstract:
A method of manufacturing a circuit board includes: forming a plurality of metal electrodes so as to be separated from each other on a holding sheet by cutting a metal foil held on the holding sheet to remove a portion of the metal foil; forming adhesive layers on surfaces of the plurality of metal electrodes; adhering the adhesive layers to a base material by closely contacting the adhesive layers with the base material; and transcribing the adhesive layers and the plurality of metal electrodes onto the base material by detaching the holding sheet from the plurality of metal electrodes.
Abstract:
A photovoltaic module includes: a flexible printed circuit; and a plurality of power generating elements mounted on the flexible printed circuit, wherein the flexible printed circuit includes a turning portion, and strip-shaped portions of the flexible printed circuit which are located on opposite sides of the turning portion are aligned so as to oppose each other.
Abstract:
A solar cell panel is discussed. The solar cell panel includes a plurality of solar cells each including a substrate and an electrode part positioned on a surface of the substrate, an interconnector for electrically connecting at least one of the plurality of solar cells to another of the plurality of solar cells, and a conductive adhesive film including a resin and a plurality of conductive particles dispersed in the resin. The conductive adhesive film is positioned between the electrode part of the at least one of the plurality of solar cells and the interconnector to electrically connect the electrode part of the at least one of the plurality of solar cells to the interconnector. A width of the interconnector is equal to or greater than a width of the conductive adhesive film.
Abstract:
Provided is a solar battery module wherein solar battery cells are electrically connected to each other by using a wiring board having a predetermined wiring pattern formed on a resin base material. A method for manufacturing such solar battery module is also provided. In the wiring board of the solar battery module, a direction wherein a design margin is small is permitted to be a direction wherein the thermal contraction ratio of the resin base material is small, by the shape of an electrode pattern on the solar battery cell and that of the wiring pattern on the wiring board. At the time of manufacturing such solar battery module, temperature in a heat treatment step is set at 100° C. or higher but not higher than 180° C. Electrode designing at a fine pitch is made possible and the solar battery module exhibits high solar battery characteristics, even when the solar battery cells are connected by using wiring boards composed of various types of resin materials having thermal compression ratio not sufficiently low.
Abstract:
A method of assembling an optical element on top of an active component in a substrate, by providing a substrate with active component and an optical element with a base and lateral base walls, fixating a bottom surface of a frame holder with opening and lateral frame walls arranged in a polygonal structure to the substrate so that the opening is positioned over the active component, and mounting the optical element in the opening so the lateral frame walls apply lateral confining mechanical force on the lateral base walls.
Abstract:
Systems, methods, and media for forming metallization for solar cells are provided. In some embodiments, a system for forming metallization on a substrate is provided, the system comprising: a first laser; a second laser; and a hardware processor programmed to: rotate a target at a predetermined speed; cause the first laser to emit a laser pulse that causes a material to be ablated from the rotating target toward a surface of a substrate; causing a continuous laser beam emitted by the second laser to pass through the ablated material and heat clusters in ablated material prior to the clusters landing on the surface of the substrate; and causing the continuous laser beam to heat deposited clusters from the plume of ablated material that have landed on the surface of the substrate to form a metallization line.
Abstract:
A method of assembling an optical element on top of an active component in a substrate, by providing a substrate with active component and an optical element with a base and lateral base walls, fixating a bottom surface of a frame holder with opening and lateral frame walls arranged in a polygonal structure to the substrate so that the opening is positioned over the active component, and mounting the optical element in the opening so the lateral frame walls apply lateral confining mechanical force on the lateral base walls.
Abstract:
A concentrated photovoltaic receiver and backplane assembly is described herein. A thermally conductive heat spreader is configured between the receiver and the backplane for dissipating at least a portion of the thermal energy in a direction including a horizontal component towards a portion of the heat spreader which is not directly in contact with a receiver portion. In some embodiments, the heat spreader is electrically conductive and is adapted for conducting current from the receiver to the backplane. In some embodiments, a surface area of a receiver substrate is less than 5 times larger than a surface area of a solar cell that is mounted onto the receiver substrate. In some embodiments, the receiver substrate comprises vias for conducting current from a top face to a bottom face of the receiver.