Abstract:
A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with the structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
This flocking powder coated article comprises a base material (10) and a flocking coating layer (11). The flocking coating layer (11) includes: a coating film (110) constituted by a powder coating, and a portion of a flocking organic filler (13) buried in the powder coating; and a flocking layer (111) constituted by another portion of the flocking organic filler (13) projecting from the coating film (110). This flocking powder coated article does not have an adhesive layer for fixing the flocking organic filler (13).
Abstract:
This invention relates generally to flocked articles and methods for making the same, more particularly to flocked products having a silicone adhesive and methods for making and using the same.
Abstract:
This invention relates generally to flocked articles and methods for making the same, more particularly to flocked products having a silicone adhesive and methods for making and using the same.
Abstract:
A composite metal foil is provided comprising a porous metal foil comprising a two-dimensional network structure composed of a metal fiber, and a primer provided on at least a part of the interior and/or periphery of pores of the porous metal foil. According to the present invention, it is possible to obtain a composite metal foil which has a desired function imparted by a primer in addition to superior properties derived from a porous metal foil, in a highly productive and cost effective manner that is suited for continuous production.
Abstract:
A process for applying particles to the inner wall of a tire comprising two sidewalls, a crown provided radially externally with a tread, a carcass-type reinforcing structure and at least one crown reinforcement, the inner surface of the sidewalls and of the crown forming an inner wall, at least one portion of said inner wall being covered with at least one layer of self-sealing composition.The particles are applied after the curing of the tire.
Abstract:
A method of imparting enduring beneficial features to a hard flocked surface of an article is provided. The method includes encapsulating a desired beneficial agent as a core material in a polymeric microcapsule, and transferring polymeric microcapsule to the surface by a dipping, spraying, or padding application. The beneficial agent, after getting transferred to the surface of a hard flocked article, imparts long lasting performance, provides fragrance and may protect an article from odor, insect, pest, fungi, bacteria, viruses, and the like. The polymeric microcapsules deliver long lasting benefits to surfaces with flocking, such as clothes hangers. Also described is a process for manufacture of flocked items with benefit delivering polymer microcapsules, without the need for binders or adhesives. Benefit agents are released with shear force on the flocked surface, so they are released when used and provide long-lasting performance.
Abstract:
Shaped microporous articles are produced from polyvinylidene fluoride (PVDF) and nucleating agents using thermally induced phase separation (TIPS) processes. The shaped microporous article is oriented in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0. The shaped article may also comprise a diluent, glyceryl triacetate. The shaped microporous article may also have the micropores filled with a sufficient quantity of ion conducting electrolyte to allow the membrane to function as an ion conductive membrane. The method of making a microporous article comprises the steps of melt blending polyvinylidene fluoride, nucleating agent and glyceryl triacetate; forming a shaped article of the mixture; cooling the shaped article to cause crystallization of the polyvinylidene fluoride and phase separation of the polyvinylidene fluoride and glyceryl triacetate; and stretching the shaped article in at least one direction at a stretch ratio of at least approximately 1.1 to 1.0.
Abstract:
A protective and decorative ornament that remains substantially in place on a vehicle's outer surface under substantially all vehicle operating conditions. The ornament includes a top decorative layer, upper and lower foam layers beneath the top layer, fastening members that extend outward from at least two edges thereof, a weighted element between the upper and lower foam layers and proximate an edge that does not include a fastening member, a substantially rigid element beneath the lower foam layer, and a substantially smooth bottom layer coupled to contact the vehicle's surface.