Abstract:
A resistor device includes a resistor plate having a first aperture, a second aperture, a third aperture and a fourth aperture respectively arranged on a first side, a second side, a third side and a fourth side thereof. A first electrode plate is coupled to the first side of the resistor plate and includes a first measurement zone and a second measurement zone disposed at opposite sides of the first aperture; and a second electrode plate is coupled to the third side of the resistor plate and including a third measurement zone and a fourth measurement zone disposed at opposite sides of the third aperture, wherein the first measurement zone and the third measurement zone are disposed at opposite sides of the second aperture, and the second measurement zone and the fourth measurement zone are disposed at opposite sides of the fourth aperture.
Abstract:
A protective device includes a substrate, two first electrodes, a low-melting point metal layer and an assisting layer. The first electrodes are respectively arranged at two opposite sides of the substrate. The low melting point metal layer is arranged over the two first electrodes. The assisting layer is formed on the low melting point metal layer. The liquidus temperature of the assisting layer is below the liquidus temperature of the low melting point metal layer, and the liquidus temperature of the assisting layer is not below a predetermined temperature which is below the maximum working temperature of reflow soldering process by 25 degrees.
Abstract:
A resistive component suitable for detecting electric current in a circuit and a method of manufacturing the resistive component are provided. The resistive component includes a carrier, a resistive layer, an electrode unit, an upper oxide layer and a protective layer. The resistive layer comprises copper alloy and is disposed on the carrier. The electrode unit is electrically connected to the resistive layer. The upper oxide layer is disposed on a part of a surface of the resistive layer and includes oxides of the resistive layer. The protective layer covers at least a part of the upper oxide layer.
Abstract:
A protective device including a substrate, a conductive section and a bridge element is provided. The conductive section is supported by the substrate, wherein the conductive section comprises a metal element electrically connected between first and second electrodes. The metal element serves as a sacrificial structure having a melting point lower than that of the first and second electrodes. The bridge element spans across the metal element in a direction across direction of current flow in the metal element, wherein the bridge element facilitates breaking of the metal element upon melting.
Abstract:
A method for adjusting the inductance of a choke is provided by the present invention. The method includes with an unchanged structure and unchanged dimensions of the core of the choke, changing the kind of the magnetic materials composing the cores so as to adjust the magnetic permeability of the magnetic material. In addition, the present invention also provides a method for designing a choke, the method includes determining the structure of a first choke and a second choke, determining the dimensions of the cores of the chokes, and selecting magnetic materials composing the cores.
Abstract:
A chip package structure including a substrate, at least one chip, a plurality of leads, a heat dissipation device, a molding compound, and at least one insulating sheet is provided. The chip is disposed on the substrate. The leads are electrically connected to the substrate. The molding compound having a top surface encapsulates the chip, the substrate, and a portion of the leads. The heat dissipation device is disposed on the top surface of the molding compound. The insulating sheet disposed between the heat dissipation device and at least one of the leads has a bending line dividing the insulating sheet into a main body disposed on the molding compound and a bending portion extending from the main body.
Abstract:
This invention discloses an inductor that includes a conducting wire composed of an alloy having temperature coefficients of resistance (TCR) 700 ppm/° C. or lower. The inductive coil has a winding configuration provided for enclosure in a substantially rectangular box with a mid-plane extended along an elongated direction of the rectangular box wherein the conducting wire intersecting at least twice near said mid-plane.
Abstract:
An electronic package structure including a first carrier, at least one first electronic element, at least one second electronic element, and an encapsulant is provided. The first carrier has a first carrying surface and a second carrying surface opposite to the first carrying surface. The first electronic element is disposed on the first carrying surface and electrically connected to the first carrier. The second electronic element is disposed on the second carrying surface and electrically connected to the first carrier. The encapsulant at least covers the first electronic element, the second electronic element, and a part of the first carrier. The space utilization rate of the first carrier of the electronic package structure is higher.
Abstract:
The present invention provides a package device for reducing the electromagnetic/radio frequency interference, which includes a first substrate with a shielding structure on the under surface of the first substrate, and an insulating layer on the shielding structure. The first substrate includes a through hole that is filled with the conductor therein. A plurality of lead-frames located on the bottom surface of the first substrate. A second substrate located above between the two lead-frames. Then, the molding compound encapsulated to cover the above structures to form a package device. Therefore, the shielding path of the package device is constructed of the plurality of lead-frames, the conductor within the first substrate, the shielding structure, and the grounded to discharge the electromagnetic/radio frequency out of the package device, thus, the electromagnetic/radio frequency interference for the package device can be reduced.
Abstract:
The present invention discloses a miniaturized multi-layer coplanar wave guide low pass filter including: a substrate; a first dielectric layer formed on and enclosing said substrate; a first metallic pattern layer formed on said first dielectric layer; a second dielectric layer formed on said first metallic pattern layer; wherein several via holes being formed on said second dielectric layer; a second metallic pattern layer formed on said second dielectric layer, wherein said via holes formed on said second dielectric layer are filled up with the metal thereof; a third dielectric layer formed on said second metallic pattern layer, wherein several via holes being formed on said third dielectric layer; and a third metallic pattern layer formed on said third dielectric layer, wherein said via holes formed on said third dielectric layer are filled with the metal thereof.