Abstract:
A method of manufacturing a semiconductor device includes forming a diffusion barrier layer on a substrate, and forming at least two features on the substrate such that the diffusion barrier layer is respectively disposed between each feature and the substrate and contacts the at least two features. A first impurity region of the substrate contains impurities of a first type, a second impurity region of the substrate contains impurities of a second type, different from the first type, a first feature of the at least two features is in the first impurity region, and a second feature of the at least two features is in the second impurity region, such that the second feature is electrically isolated from first feature by the different impurity regions.
Abstract:
An image sensor package, a method of manufacturing the same, and an image sensor module including the image sensor package are provided. In the image sensor package, an image sensor chip is installed onto a depression of a transmissive substrate. An adhesive bonds the image sensor chip to the transmissive substrate and seals an Active Pixel Sensor (APS) on the image sensor chip, protecting it from fine particle contamination. An IR cutting film is disposed on the transmissive substrate to minimize the height of the image sensor package. The image sensor package is electrically connected to external connection pads in the depression. Consequently, the image sensor package has a minimum height, is not susceptible to particle contamination, and does not require expensive alignment processes during manufacturing.
Abstract:
An image sensor package may include a transparent substrate, an image sensor chip having a sensing region disposed over the transparent substrate, a resin protection dam disposed between the image sensor chip and the transparent substrate inside a wiring pattern, the resin protection dam having an aperture formed to expose a sensing region of the image sensor chip and defining a cavity between the sensing region and the transparent substrate, a resin filled on the transparent substrate outside the resin protection dam, and a black matrix pattern disposed on each side of the transparent substrate and configured to block excess transmission of light.
Abstract:
Example embodiments of the present invention relate to an alloy solder and a semiconductor device using the alloy solder. Other example embodiments relate to an alloy solder capable of increasing reliability of a junction between a semiconductor chip and a substrate. According to still other example embodiments of the present invention, there may be a tin-bismuth (Sn—Bi) family alloy solder between a semiconductor chip and a substrate, and a semiconductor device using the alloy solder. The semiconductor device may include a semiconductor chip formed with a plurality of gold (Au) bumps, a substrate having metal wirings connected to the gold (Au) bumps, and a junction including a tin-bismuth (Sn—Bi) family alloy solder interposed between and connecting the gold (Au) bump and the metal wiring.The formation of a relatively large amount of AuSn4 intermetallic compound may be inhibited in the junction because gold (Au) may not easily diffuse into a tin-bismuth (Sn—Bi) family alloy solder of a liquid state during a reflow process for connecting the semiconductor chip and substrate. Therefore, most of the junction may be retained as the tin-bismuth (Sn—Bi) family alloy solder.
Abstract:
A circuit film having film bumps is provided for a film package. An IC chip is mechanically joined and electrically coupled to the circuit film through the film bumps instead of conventional chip bumps. In a fabrication method, a base film is partially etched by a laser to create an etched area that defines raised portion relatively raised from the etched area. Then a circuit pattern is selectively formed on the base film, partly running over the raised portions. The raised portion and the overlying circuit pattern constitute the film bumps having a height not greater than the height of the circuit film.
Abstract:
In one embodiment, a film circuit substrate comprises an insulating film made of polyimide resin; a conductive circuit pattern formed on the insulating film, the circuit pattern including an inner lead to be connected with a conductive bump of a semiconductor chip through a bump bonding process; and a tin-indium alloy layer formed on the inner lead to produce an inter-metallic compound layer of AuxSn composition during the bump bonding process.
Abstract:
A tape circuit substrate and semiconductor chip package using the same. The tape circuit substrate may comprise a base film which may be made of an insulating material and may be formed with via-holes at portions thereof, a first wiring pattern layer which may be formed on a first surface of the base film, and at least one second wiring pattern layer which may be formed on a second surface of the base film and electrically connected to a terminal which may be formed on the first surface through conductive materials, or plugs, filled in the via-holes. The semiconductor chip package may comprise a semiconductor chip which may be electrically bonded to the tape circuit substrate through chip bumps.