Abstract:
According to the present invention, a method for manufacturing a compound semiconductor comprises: forming a graphene-derived material layer on either a first selected substrate or a first selected compound semiconductor layer; forming a second compound semiconductor layer of at least one layer on at least said graphene-derived material layer, and changing the graphene-derived material layer so as to separate said second compound semiconductor layer of at least one layer.
Abstract:
A zoneplate includes a first pattern having a first thickness, the first pattern including a first material, and a second pattern adjacent to the first pattern and having a second thickness larger than the first thickness, the second pattern including a second material, incident light incident on the first pattern from the outside passing through the first pattern, and incident light incident on the second pattern from the outside passing through the second pattern.
Abstract:
A reflective extreme ultraviolet mask includes a mask substrate having an exposing region and a peripheral region, the mask substrate including a light-scattering portion in the peripheral region, a reflective layer on an upper surface of the mask substrate, the reflective layer having a first opening exposing the light-scattering portion, and an absorbing layer pattern on the reflective layer, the absorbing layer pattern having a second opening in fluid communication with the first opening.
Abstract:
An apparatus for measuring an image of a pattern to be formed on a semiconductor by scanning the pattern using a scanner, the apparatus including an EUV mask including the pattern, a zoneplate lens on a first side of the EUV mask and adapted to focus EUV light on a portion of the EUV mask at a same angle as an angle at which the scanner will be disposed with respect to a normal line of the EUV mask, and a detector arranged on another side of the EUV mask and adapted to sense energy of the EUV light from the EUV mask, wherein NAzoneplate=NAscanner/n and NAdetector=NAscanner/n*σ, where NAzoneplate denotes a NA of the zoneplate lens, NAdetector denotes a NA of the detector, and NAscanner denotes a NA of the scanner, σ denotes an off-axis degree of the scanner, and n denotes a reduction magnification of the scanner.
Abstract:
A microscope includes optics configured to direct beams onto an object including a reflective material, a detector configured to receive a field spectrum formed by beams reflected by the object, and a calculator configured to reconstruct an image of the object from the field spectrum detected by the detector.
Abstract:
An energy harvesting apparatus includes an inverse frequency rectifier structured to receive mechanical energy at a first frequency, and a solid state electromechanical transducer coupled to the inverse frequency rectifier t receive a force provided by the inverse frequency rectifier. The force, when provided by the inverse frequency rectifier, causes the solid state transducer to be subjected to a second frequency that is higher than the first frequency to thereby generate electrical power.
Abstract:
A microscope includes optics configured to direct beams onto an object including a reflective material, a detector configured to receive a field spectrum formed by beams reflected by the object, and a calculator configured to reconstruct an image of the object from the field spectrum detected by the detector.
Abstract:
A polarization measuring device includes a diffraction grating and a detector. The diffraction grating is configured to diffract incident light to observe the polarization state of the light. The detector is configured to receive the light diffracted by the diffraction grating and display the polarization state of the light.
Abstract:
Disclosed herein is a point-diffraction interferometer which can inspect a surface quality of an optical system for extreme ultraviolet lithography using a high-order harmonic X-ray source with excellent coherence, and an apparatus and method for generating a high-order harmonic X-ray. The present invention uses a high-order harmonic X-ray beam as a coherence light source, thus remarkably reducing the size of an apparatus for generating a light source to approximately 1/100 of a device using a light source generated in a conventional synchrotron. Further, the present invention simplifies the construction of an interferometer by employing a thin foil in which a pinhole is formed through a drilling technique using high power femtosecond laser, thus increasing the industrial utility of the interferometer.
Abstract:
A method of patterning a photoresist layer includes forming a photoresist layer on a substrate, exposing the photoresist layer to light using a first light source so as to induce a chemical change in the photoresist layer, performing a post-exposure bake process on the photoresist layer, the post-exposure bake process including irradiating the photoresist layer with at least two shots of laser light from a second light source such that the photoresist layer is heated to a first temperature, and performing a developing process on the photoresist layer after the post-exposure bake process, the development process selectively removing a portion of the photoresist layer.