Abstract:
The use of sensory G protein-coupled receptors that recognize chemical sensants, parti-cularly those involving olfactory and taste receptors; polypeptide fragments and mutants thereof; classes of such receptors; polynucleotides encoding such receptors, fragments and mutants thereof, and representatives of receptor classes; genetic vectors including such polynucleotides; and cells and non-human organisms engineered to express such receptor complexes, fragments and mutants of an olfactory or taste receptor, and representatives of receptor classes to simulate sensory perception of odorants and tastants is described. The use of such products as a biosensor or a component thereof to detect, identify, measure, or otherwise process the event of binding between the receptor and its cognate ligand (i.e., chemical sensant) is also described. The invention has application, for example, in the design and formulation of odorant and tastant compositions.
Abstract:
A computer system for sequencing nucleic acids is provided. The computer system may be used for de novo sequencing of a nucleic acid sequence by analyzing the fluorescence intensities of hybridized nucleic acid probes on biological chips. The probes with the highest intensities are utilized to sequence the nucleic acid and related probes are analyzed to increase the accuracy of nucleic acid sequencing. The sequence of the nucleic acid sequence may be determined from hybridization intensities that do not allow identification of perfectly complementary probes.
Abstract:
This invention provides oligonucleotide based arrays and methods for speciating and phenotyping organisms, for example, using oligonucleotide sequences based on the Mycobacterium tuberculosis rpoB gene. The groups or species to which an organism belongs may be determined by comparing hybridization patterns of target nucleic acid from the organism to hybridization patterns in a database.
Abstract:
Systems and methods of synthesizing probes on a substrate are provided. One or more shift reticles are utilized to uniformly add monomers to the substrate at specified locations. The shift reticles are shifted relative to the substrate between monomer addition steps. Additionally, characteristics of the desired probes may be specified at synthesis time.
Abstract:
A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve light-directed spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protective groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.
Abstract:
The present invention provides methods and apparatus for sequencing, fingerprinting and mapping biological macromolecules, typically biological polymers. The methods make use of a plurality of sequence specific recognition reagents which can also be used for classification of biological samples, and to characterize their sources.
Abstract:
The present invention provides methods and apparatus for sequencing, fingerprinting and mapping biological macromolecules, typically biological polymers. The methods make use of a plurality of sequence specific recognition reagents which can also be used for classification of biological samples, and to characterize their sources.
Abstract:
A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve light-directed spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protective groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.
Abstract:
A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.
Abstract:
Systems and methods of synthesizing probes on a substrate are provided. One or more shift reticles are utilized to uniformly add monomers to the substrate at specified locations. The shift reticles are shifted relative to the substrate between monomer addition steps. Additionally, characteristics of the desired probes may be specified at synthesis time.