Abstract:
This method includes a method for etch processing that allows the bias between isolated and nested structures/features to be adjusted, correcting for a process wherein the isolated structures/features need to be smaller than the nested structures/features and wherein the nested structures/features need to be reduced relative to the isolated structures/features, while allowing for the critical control of trimming.
Abstract:
A method and system for monitoring tool performance for processing tools in a semiconductor processing system. The semiconductor processing system includes a number of processing tools, a number of processing modules, a number of sensors, and an alarm management system. A tool health control strategy is executed in which tool health data for the processing tool is collected. A tool health analysis strategy is executed in which the tool health data is analyzed. An intervention manager can pause the processing tool when an alarm has occurred. The intervention manager refrains from pausing the processing tool when an alarm has not occurred.
Abstract:
Graphical User Interfaces (GUIs) are presented for configuring and setting-up sensors for monitoring tool and process performance in a semiconductor processing system. The semiconductor processing system includes a number of processing tools, a number of processing modules (chambers), and a number of sensors. The graphical display is organized so that all significant parameters are clearly and logically displayed so that the user is able to perform the desired configuration and setup tasks with as little input as possible. The GUI is web-based and is viewable by a user using a web browser.
Abstract:
A surface wave plasma (SWP) source couples pulsed microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). To prevent impingement of the microwave energy onto the surface of a substrate when plasma density is low between pulses, an ICP source, such as a helical inductive source, a planar RF coil, or other inductively coupled source, is provided between the SWP source and the substrate to produce plasma that is opaque to microwave energy. The ICP source can also be pulsed in synchronism with the pulsing of the MW plasma in phase with the ramping up of the MW pulses. The ICP also adds an edge dense distribution of plasma to a generally chamber centric MW plasma to improve plasma uniformity.
Abstract:
A surface wave plasma (SWP) source couples pulsed microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). To prevent impingement of the microwave energy onto the surface of a substrate when plasma density is low between pulses, an ICP source, such as a helical inductive source, a planar RF coil, or other inductively coupled source, is provided between the SWP source and the substrate to produce plasma that is opaque to microwave energy. The ICP source can also be pulsed in synchronism with the pulsing of the MW plasma in phase with the ramping up of the MW pulses. The ICP also adds an edge dense distribution of plasma to a generally chamber centric MW plasma to improve plasma uniformity.
Abstract:
A plasma processing system. The processing system comprises a process chamber having first and second ends arranged such that the first end opposes the second end. A substrate support is positioned at the first end of the process chamber and is configured to support a substrate. An exhaust system is positioned proximate the second end of the process chamber and draws a vacuum on the process chamber. Between the exhaust system and substrate support there is a plurality of super-Debye openings, and between the exhaust system and the plurality of super-Debye openings is a plurality of sub-Debye openings. The super-Debye openings are configured to limit diffusion of plasma while the sub-Debye openings are configured to quench plasma.
Abstract:
A replaceable chamber element for use in a plasma processing system, such as a plasma etching system, is described. The replaceable chamber element includes a chamber component configured to be exposed to plasma in a plasma processing system, wherein the chamber component is fabricated to include a semiconductor junction, and wherein a capacitance of the chamber component is varied when a voltage is applied across the semiconductor junction.
Abstract:
The invention provides a plurality of Surface Wave Antenna (SWA) plasma sources. The SWA plasma sources can comprise one or more non-circular slot antennas, each having a plurality of plasma-tuning rods extending therethrough. Some of the plasma tuning rods can be configured to couple the electromagnetic (EM) energy from one or more of the non-circular slot antennas to the process space within the process chamber. The invention also provides SWA plasma sources that can comprise a plurality of resonant cavities, each having one or more plasma-tuning rods extending therefrom. Some of the plasma tuning rods can be configured to couple the EM energy from one or more of the resonant cavities to the process space within the process chamber.
Abstract:
The invention can provide apparatus and methods of processing a substrate in real-time using a Quasi-Neutral Beam (Q-NB) curing system to improve the etch resistance of photoresist layer. In addition, the improved photoresist layer can be used to more accurately control gate and/or spacer critical dimensions (CDs), to control gate and/or spacer CD uniformity, and to eliminate line edge roughness (LER) and line width roughness (LWR).
Abstract:
The invention provides a method of processing a wafer using Ion Energy (IE)-related multilayer process sequences and Ion Energy Controlled Multi-Input/Multi-Output (IEC-MIMO) models and libraries that can include one or more measurement procedures, one or more IEC-etch sequences, and one or more Ion Energy Optimized (IEO) etch procedures. The IEC-MIMO process control uses dynamically interacting behavioral modeling between multiple layers and/or multiple IEC etch sequences. The multiple layers and/or the multiple IEC etch sequence can be associated with the creation of lines, trenches, vias, spacers, contacts, and gate structures that can be created using IEO etch procedures.