Abstract:
A TiN film is selectively formed as a barrier layer on a Cu metal layer by selective removal of a Ti metal layer on the Si metal layer after the following steps of selectively forming a Si metal layer as an etching mask on an insulation film, forming a trench pattern by selective removal of the insulation film using the Si metal layer, forming a Cu metal layer in the trench pattern with the Si metal layer remained, forming the Ti metal layer on the Si metal layer and the Cu metal layer as a barrier material with a different kind of eutectic reaction with Cu from the reaction with the etching mask by heat-treatment in an atmosphere of nitrogen, and selectively nitriding the Ti metal layer on the Cu metal layer by heat-treatment of the Ti metal layer in an atmosphere of nitrogen.
Abstract:
The present invention is directed to the prevention of a decrease in the resolution of a film shifter-type alternating phase shifting mask, and the complexity of the mask forming step, and discusses the structure of a novel alternating phase shifting mask, and a novel manufacturing method which does not require the etching for forming a shifter. To achieve this object, hydrogen silsesquioxane (flowable oxide (FOX)) is used as the material for the phase shifter. The optical characteristics of this film are very close to those of a quartz substrate, and the property that the in-surface variation (.+-.3 .sigma.) of the thickness is 1% or less, is close to that of SOG (Spin On Glass). The most advantageous aspect of the FOX being used for the mask manufacturing process is that, since the FOX film is etched at the same time as the resist development, with the alkaline developing solution used for etching the resist, there is no need to provide a particular step for etching the shifter.
Abstract translation:本发明涉及防止膜移位器型交替相移掩模的分辨率降低以及掩模形成步骤的复杂性,并且讨论了新颖的交替相移掩模的结构和新颖的制造 方法,其不需要用于形成移位器的蚀刻。 为了实现该目的,使用氢倍半硅氧烷(可流动氧化物(FOX))作为移相器的材料。 该膜的光学特性非常接近于石英基板,其厚度的面内变化(+/- 3西格玛)为1%以下,与SOG接近(Spin On 玻璃)。 用于掩模制造工艺的FOX最有利的方面是,由于与抗蚀剂显影同时蚀刻FOX膜,所以使用用于蚀刻抗蚀剂的碱性显影液,不需要提供 蚀刻移位器的特定步骤。
Abstract:
A family of antibiotics active against pathogenic yeasts and fungi comprises aculeacin-A, -B, -C, -D, -E, -F, and -G. These are produced from cultured broth of Aspergillus aculeatus FERM-P 2324.
Abstract:
7-Amino-cephem compounds are produced from 7-substituted-cephem compounds by the enzymatic action of microorganisms Comamonas sp. SY-77-1 FERM-P 2410 or Pseudomonas ovalis ATCC 950.
Abstract:
According to one embodiment, a semiconductor device includes a drain layer, a drift, a base, a source region, a plurality of gates provided on the drift region, the base, and the source region, and arranged in a manner spaced apart from each other, a first interlayer insulating film arranged between the plurality of gates on the source region, a gate interconnection film provided on the first interlayer insulating film and the gate, a second interlayer insulating film provided on the gate interconnection film, an inetconnection film provided on the second interlayer insulating film and connected in common to the source region, the interconnection film filling the contact hole provided between each of the gates in the second interlayer insulating film, the gate interconnection film and the first interlayer insulating film and an insulating film arranged between the gate interconnection film and the interconnection film in the contact hole.
Abstract:
According to one embodiment, a semiconductor device includes a device portion, a first electrode portion, a second electrode portion and a protruding portion. The device portion is provided on a substrate. The first electrode portion is provided on the device portion and is electrically contacted with the device portion. The second electrode portion is provided on the device portion separated from the first electrode portion, and electrically contacted with the device portion. The protruding portion is provided on the device portion and protrudes outward from a peripheral portion of the first electrode portion and the second electrode portion.
Abstract:
A cathode potential is applied to a conductive layer formed on a substrate having a depression pattern. A plating solution in electrical contact with an anode is supplied to the conductive layer to form a plating film on the conductive layer. At this time, the plating solution is supplied by causing an impregnated member containing the plating solution to face the conductive layer. Since the plating solution stays in the depression, a larger amount of plating solution is supplied than on the upper surface of the substrate, and the plating rate of the plating film in the depression increases. Consequently, the plating film can be preferentially formed in the depression such as a groove or hole.
Abstract:
A plating method and apparatus for a substrate fills a metal, e.g., copper, into a fine interconnection pattern formed in a semiconductor substrate. The apparatus has a substrate holding portion 36 horizontally holding and rotating a substrate with its surface to be plated facing upward. A seal material 90 contacts a peripheral edge portion of the surface, sealing the portion in a watertight manner. A cathode electrode 88 passes an electric current upon contact with the substrate. A cathode portion 38 rotates integrally with the substrate holding portion 36. An electrode arm portion 30 is above the cathode portion 38 and movable horizontally and vertically and has an anode 98 face-down. Plating liquid is poured into a space between the surface to be plated and the anode 98 brought close to the surface to be plated. Thus, plating treatment and treatments incidental thereto can be performed by a single unit.
Abstract:
An electronic device manufacturing method comprises forming an insulating film above a substrate, forming a to-be-filled region which includes at least one of an interconnection groove and a hole in the insulating film, forming a first conductive film containing a catalyst metal which accelerates electroless plating, so as to line an internal surface of the to-be-filled region, forming a second conductive film on the first conductive film by the electroless plating, so as to line the internal surface of the to-be-filled region via the first conductive film, and forming a third conductive film on the second conductive film by electroplating, so as to fill the to-be-filled region via the first conductive film and the second conductive film.
Abstract:
A plating method and apparatus for a substrate fills a metal, e.g., copper, into a fine interconnection pattern formed in a semiconductor substrate. The apparatus has a substrate holding portion 36 horizontally holding and rotating a substrate with its surface to be plated facing upward. A seal material 90 contacts a peripheral edge portion of the surface, sealing the portion in a watertight manner. A cathode electrode 88 passes an electric current upon contact with the substrate. A cathode portion 38 rotates integrally with the substrate holding portion 36. An electrode arm portion 30 is above the cathode portion 38 and movable horizontally and vertically and has an anode 98 face-down. Plating liquid is poured into a space between the surface to be plated and the anode 98 brought close to the surface to be plated. Thus, plating treatment and treatments incidental thereto can be performed by a single unit.