Abstract:
A microelectronic assembly in which a semiconductor device structure is directionally positioned on an off-axis substrate. In an illustrative implementation, a laser diode is oriented on a GaN substrate wherein the GaN substrate includes a GaN (0001) surface off-cut from the direction predominantly towards either the or the family of directions. For a off-cut substrate, a laser diode cavity may be oriented along the direction parallel to lattice surface steps of the substrate in order to have a cleaved laser facet that is orthogonal to the surface lattice steps. For a off-cut substrate, the laser diode cavity may be oriented along the direction orthogonal to lattice surface steps of the substrate in order to provide a cleaved laser facet that is aligned with the surface lattice steps.
Abstract:
In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
Abstract:
Large area single crystal III-V nitride material having an area of at least 2 cm2, having a uniformly low dislocation density not exceeding 3×106 dislocations per cm2 of growth surface area, and including a plurality of distinct regions having elevated impurity concentration, wherein each distinct region has at least one dimension greater than 50 microns, is disclosed. Such material can be formed on a substrate by a process including (i) a first phase of growing the III-V nitride material on the substrate under pitted growth conditions, e.g., forming pits over at least 50% of the growth surface of the III-V nitride material, wherein the pit density on the growth surface is at least 102 pits/cm2 of the growth surface, and (ii) a second phase of growing the III-V nitride material under pit-filling conditions.
Abstract translation:具有至少2cm 2面积的大面积单晶III-V族氮化物材料,具有均匀低位错密度,每平方厘米生长表面积不超过3×106位错,并且包括具有升高的杂质浓度的多个不同区域,其中 每个不同的区域具有大于50微米的至少一个尺寸。 这样的材料可以通过以下工艺在基底上形成,该方法包括:(i)在凹陷生长条件下在衬底上生长III-V族氮化物材料的第一相,例如在III的生长表面的至少50%上形成凹坑 -V氮化物材料,其中生长表面上的凹坑密度为生长表面的至少102个凹坑/ cm 2,和(ii)在凹坑填充条件下生长III-V族氮化物材料的第二阶段。
Abstract:
In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
Abstract:
A method and apparatus for manufacture of carbon nanotubes, in which a substrate is contacted with a hydrocarbonaceous feedstock containing a catalytically effective metal to deposit the feedstock on the substrate, followed by oxidation of the deposited feedstock to remove hydrocarbonaceous and carbonaceous components from the substrate, while retaining the catalytically effective metal thereon, and contacting of the substrate having retained catalytically effective metal thereon with a carbon source material to grow carbon nanotubes on the substrate. The manufacture can be carried out with a petroleum feedstock such as an oil refining atmospheric tower residue, to produce carbon nanotubes in high volume at low cost. Also disclosed is a composite including porous material having single-walled carbon nanotubes in pores thereof.
Abstract:
Large area, uniformly low dislocation density single crystal III-V nitride material, e.g., gallium nitride having a large area of greater than 15 cm2, a thickness of at least 1 mm, an average dislocation density not exceeding 5E5 cm−2, and a dislocation density standard deviation ratio of less than 25%. Such material can be formed on a substrate by a process including (i) a first phase of growing the III-V nitride material on the substrate under pitted growth conditions, e.g., forming pits over at least 50% of the growth surface of the III-V nitride material, wherein the pit density on the growth surface is at least 102 pits/cm2 of the growth surface, and (ii) a second phase of growing the III-V nitride material under pit-filling conditions.
Abstract:
Large area, uniformly low dislocation density single crystal Ill-V nitride material, e.g., gallium nitride having a large area of greater than 15 cm2, a thickness of at least 1 mm, an average dislocation density not exceeding 5E5 cm−2, and a dislocation density standard deviation ratio of less than 25%, and methods of forming same, are disclosed. Such material can be formed on a substrate by a process including (i) a first phase of growing the Ill-V nitride material on the substrate under pitted growth conditions, e.g., forming pits over at least 50% of the growth surface of the III-V nitride material, wherein the pit density on the growth surface is at least 102 pits/cm2 of the growth surface, and (ii) a second phase of growing the III-V nitride material under pit-filling conditions.
Abstract:
A flat-panel display is fabricated by a process in which a spacer (24) having a rough face (54 or 56) is positioned between a pair of plate structure (20 and 22). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as providing suitable depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92) along the spacer's face.
Abstract:
Large-area, single crystal semi-insulating gallium nitride that is usefully employed to form substrates for fabricating GaN devices for electronic and/or optoelectronic applications. The large-area, semi-insulating gallium nitride is readily formed by doping the growing gallium nitride material during growth thereof with a deep acceptor dopant species, e.g., Mn, Fe, Co, Ni, Cu, etc., to compensate donor species in the gallium nitride, and impart semi-insulating character to the gallium nitride.
Abstract:
Amorphous silicon carbide thin film structures, including: protective coatings for windows in infrared process stream monitoring systems and sensor domes, heated windows, electromagnetic interference shielding members and integrated micromachined sensors; high-temperature sensors and circuits; and diffusion barrier layers in VLSI circuits. The amorphous silicon carbide thin film structures are readily formed, e.g., by sputtering at low temperatures.