Abstract:
A sensor semiconductor device and a method for fabricating the same are provided. At least one sensor chip is mounted and electrically connected to a lead frame. A first and a second encapsulation molding processes are sequentially performed to form a transparent encapsulant for encapsulating the sensor chip and a part of the lead frame and to form a light-impervious encapsulant for encapsulating the transparent encapsulant. The transparent encapsulant has a light-pervious portion formed at a position corresponding to and above a sensor zone of the sensor chip. The light-pervious portion is exposed from the light-impervious encapsulant. Light may penetrate the light-pervious portion, without using an additional cover board, thereby reducing manufacturing steps and costs. The above arrangement avoids prior-art problems of poor reliability caused by a porous encapsulant and poor signal reception caused by interference of ambient light entering into a conventional chip only encapsulated by a transparent encapsulant.
Abstract:
The present invention proposes a multi-chip semiconductor device having leads and a method for fabricating the same. The method includes the steps of: providing a substrate having a plurality of connection pads disposed on a surface thereof; mounting a plurality of semiconductor chips on the surface of the substrate, and electrically connecting the semiconductor chips to the surface of the substrate; forming an encapsulant on the substrate to encapsulate the semiconductor chips and expose the connection pads to form a package unit; and providing a lead frame having a plurality of leads, and electrically connecting the connection pads exposed from the package unit to the leads of the lead frame to form a multi-chip semiconductor device having leads, thereby forming a multi-chip semiconductor device having leads. By the multi-chip semiconductor device and the method for fabricating the same as proposed in the present invention, problems like poor reliability caused by stress induced by several types of materials in a semiconductor package into which a substrate and leads are integrated, moisture absorption by an encapsulated substrate, and cracks developed as a result of moisture absorption by the substrate can be avoided.
Abstract:
A method for fabricating semiconductor packages is disclosed, including mounting and electrically connecting a semiconductor chip onto a chip carrier; mounting a heat-dissipating structure on the semiconductor chip; placing the heat-dissipating structure into a mold cavity for filling therein a packaging material to form an encapsulant, wherein the heat-dissipating structure has a heat spreader having a size larger than that of the predetermined size of the semiconductor package, a covering layer formed on the, and a plurality of protrusions formed on edges of the covering layer that are free from being corresponding in position to the semiconductor chip, such that the protrusions can abut against a top surface of the mold cavity to prevent the heat spreader from being warped; and finally performing a singulation process according to the predetermined size and removing the encapsulant formed on the covering layer to form the desired semiconductor package. Also, this invention discloses a heat-dissipating structure applicable to the method described above.
Abstract:
A semiconductor device and a fabrication method thereof are provided. A semiconductor substrate having a plurality of bonding pads is prepared, and a first passivation layer, a second passivation layer and a metallic layer are successively formed on the semiconductor substrate. A third passivation layer is further applied on the semiconductor substrate and has a plurality of openings for exposing a portion of the metallic layer, wherein each of the openings is shifted in position from a corresponding one of the bonding pads by a distance not exceeding a radius of the bonding pad. A plurality of solder bumps are bonded to the exposed portion of the metallic layer and have a larger contact area with the third passivation layer. This provides better buffer to reduce stress exerted on the solder bumps, thereby preventing problems of cracking and delamination as in the prior art.
Abstract:
A heat dissipating semiconductor package and a fabrication method therefor are provided. The fabrication method for the heat dissipating semiconductor package mainly includes steps of: containing a substrate having a chip mounted thereon in an aperture of a carrier; mounting a heat dissipating sheet having supporting portions on the carrier with the heat dissipating sheet being attached on the chip; forming an encapsulant to encapsulate the semiconductor chip and the heat dissipating structure; removing a part of the encapsulant above the heat dissipating sheet with a part of the heat dissipating sheet exposed from the encapsulant by lapping; and forming a cover layer on the part of heat dissipating sheet to prevent it from oxidation; and cutting along a predetermined size of the semiconductor package, thereby heat generated from an operation of the chip is dissipated via the heat dissipating structure.
Abstract:
A semiconductor package with a heat sink and a method for fabricating the same are proposed. The heat sink is provided with a rigid and thermally resistant detach member on a top surface thereof, and is attached via its bottom surface to a chip mounted on a chip carrier. The detach member is sized larger than the heat sink and can be easily removed from the top surface of the heat sink. Subsequently, a molding process is performed to form an encapsulant for completely encapsulating the chip, the heat sink and the detach member. Then, a singulation process is performed to cut along predetermined cutting lines located between sides of the heat sink and corresponding sides of the detach member. Finally, the detach member and a portion of the encapsulant formed on the detach member are removed from the heat sink. The above fabrication method reduces the packaging cost.
Abstract:
A fabrication method of under bump metallurgy (UBM) structure is provided. A blocking layer is applied over a surface of a semiconductor element formed with at least one bond pad and a passivation layer thereon. The passivation layer covers the semiconductor element and exposes the bond pad, and the blocking layer covers the bond pad and the passivation layer. The blocking layer is formed with at least one opening at a position corresponding to the bond pad. Metallic layers are formed on a surface of the blocking layer and at the opening. The metallic layers are patterned to form a UBM structure at the opening corresponding to the bond pad. Then the blocking layer is removed. The blocking layer can separate the metallic layers for forming the UBM structure from the passivation layer to prevent metallic residues of the UBM structure from being left on the passivation layer.
Abstract:
A heat sink package structure and a method for fabricating the same are disclosed. The method includes mounting and electrically connecting a semiconductor chip to a chip carrier, forming an interface layer or a second heat dissipating element having the interface layer on the semiconductor chip and installing a first heat dissipating element having a heat dissipating portion and a supporting portion onto the chip carrier. The method further includes forming openings corresponding to the semiconductor chip in the heat dissipating portion, and forming an encapsulant for covering the semiconductor chip, the interface layer or the second heat dissipating element, and the first heat dissipating element. A height is reserved on top of the interface layer for the formation of the encapsulant for covering the interface layer. The method further includes cutting the encapsulant along edges of the interface layer, and removing the redundant encapsulant on the interface layer. Therefore, the drawbacks of the prior art of the burrs caused by a cutting tool for cutting the heat dissipating element and wearing of the cutting tool are overcome.
Abstract:
A semiconductor package structure and a fabrication method thereof are provided. The fabrication method includes providing a semiconductor chip having an active surface, a inactive surface, and a plurality of bond pads formed on the active surface; coupling one or more substrates to the active surface in such a way that the bond pads are exposed through one or more openings in the one or more substrates and/or gaps between the substrates to electrically connect the bond pads to the substrate; attaching and electrically connecting the semiconductor chip to a leadframe having a plurality of leads; and encapsulating the semiconductor chip, the substrate, and the leadframe with an encapsulant, with at least bottom surfaces of the leads of the leadframe being exposed from the encapsulant. An indented structure is therefore formed on the bottom surface of an inner portion of each of the leads of the leadframe.
Abstract:
An electronic carrier board and a package structure thereof are provided. The electronic carrier board includes a carrier, at least one pair of bond pads formed on the carrier, and a protective layer covering the carrier. The protective layer is formed with openings for exposing the bond pads. A groove is formed between the paired bond pads and has a length larger than a width of an electronic component mounted on the paired bond pads. The groove is adjacent to one of the paired bond pads and communicates with a corresponding one of the openings where this bond pad is exposed. Accordingly, a clearance between the electronic component and the electronic carrier board can be effectively filled with an insulating resin for encapsulating the electronic component, thereby preventing voids and undesirable electrical bridging between the paired bond pads from occurrence.