Abstract:
A method for fabricating an integrated circuit includes providing a semiconductor substrate including a gate electrode structure thereon and sidewall spacers along sidewalls of the gate electrode structure to a first height along the sidewalls, forming a planarizing carbon-based polymer layer over the gate electrode structure and over the sidewall spacers, and etching a portion of the optical planarization layer to expose a top portion the gate electrode structure. Further, the method includes etching an upper portion of the sidewall spacers selective to the gate electrode structure so as to expose the sidewalls of the upper portion of the gate electrode structure and depositing a silicide-forming material over the top portion of the gate electrode structure and the sidewalls of the upper portion of the gate electrode structure. Still further, the method includes annealing the silicide-forming material.
Abstract:
A method for fabricating an integrated circuit includes providing a semiconductor substrate including a gate electrode structure thereon and sidewall spacers along sidewalls of the gate electrode structure to a first height along the sidewalls, forming a planarizing carbon-based polymer layer over the gate electrode structure and over the sidewall spacers, and etching a portion of the optical planarization layer to expose a top portion the gate electrode structure. Further, the method includes etching an upper portion of the sidewall spacers selective to the gate electrode structure so as to expose the sidewalls of the upper portion of the gate electrode structure and depositing a silicide-forming material over the top portion of the gate electrode structure and the sidewalls of the upper portion of the gate electrode structure. Still further, the method includes annealing the silicide-forming material.
Abstract:
A method of forming a semiconductor device including forming a dielectric material layer on a semiconductor layer, forming a gate electrode material layer on the dielectric material layer, forming mask features on the gate electrode material layer, forming a spacer layer on and at sidewalls of the mask features and on the gate electrode material layer between the mask features, removing the spacer layer from the gate electrode material layer between the mask features, and etching the gate electrode material layer and dielectric material layer using the hard mask features as an etch mask to obtain gate electrode structures. A semiconductor device including first and second gate electrode structures, each covered by a cap layer that comprises a mask material surrounded at the sidewalls thereof by a spacer material different from the mask material, and the distance between the first and second electrode structures is at most 100 nm.
Abstract:
A transistor device includes a gate electrode structure. The gate electrode structure includes a high-k gate insulation layer, a metal-containing first electrode material positioned above the high-k gate insulation layer, and a second electrode material positioned above the metal-containing first electrode material. The high-k gate insulation layer has a length that is less than a length of the second electrode material.
Abstract:
In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
Abstract:
In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
Abstract:
A method disclosed herein includes providing a semiconductor structure comprising a transistor, the transistor comprising a gate electrode and a silicon nitride sidewall spacer formed at the gate electrode. A wet etch process is performed. The wet etch process removes at least a portion of the silicon nitride sidewall spacer. The wet etch process comprises applying an etchant comprising at least one of hydrofluoric acid and phosphoric acid.
Abstract:
In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.