Abstract:
Capture compounds and collections thereof and methods using the compounds for the analysis of biomolecules are provided. In particular, collections, compounds and methods are provided for analyzing complex protein mixtures, such as the proteome. The compounds are multifunctional reagents that provide for the separation and isolation of complex protein mixtures. Automated systems for performing the methods also are provided.
Abstract:
Fast and highly accurate mass spectrometry-based processes for detecting particular nucleic acid molecules and mutations in the molecules are provided.
Abstract:
Provided are methods for detecting a target nucleic acid in a biological sample using RNA amplification. In an embodiment, provided is a method that comprises (a) amplifying a target nucleic acid, or portion thereof, using a primer comprising a sequence that is complementary to a polynucleotide sequence in the target nucleic acid, or a complement thereof, and a sequence that encodes an RNA polymerase promoter; (b) synthesizing RNA using an RNA polymerase that recognizes the promoter; and (c) detecting the presence or absence of the resulting RNA using mass spectrometry thereby detecting the presence or absence of the target nucleic acid in the biological sample.
Abstract:
The invention provides methods for dispensing tools that can be employed to generate multi-element arrays of sample material on a substrate surface. The substrates surfaces can be flat or geometrically altered to include wells of receiving material. The tool can dispense a spot of fluid to a substrate surface by spraying the fluid from the pin, contacting the substrate surface or forming a drop that touches against the substrate surface. The tool can form an array of sample material by dispensing sample material in a series of steps, while moving the pin to different locations above the substrate surface to form the sample array. The invention then passes the prepared sample arrays to a plate assembly that disposes the sample arrays for analysis by mass spectrometry. To this end, a mass spectrometer is provided that generates a set of spectra signal which can be understood as indicative of the composition of the sample material under analysis.
Abstract:
Methods for detecting and sequencing of target double-stranded nucleic acid molecules, nucleic acid probes and arrays of probes useful in these methods, and kits and systems that contain these probes are provided. The methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes include a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments.
Abstract:
Fully automated modular analytical systems with integrated instrumentation for analysis of biopolymer samples, such as nucleic acids, proteins, peptides and carbohydrates, are provided. Analytical methods of detection and analysis, such as mass spectrometry, radiolabeling, mass tags, chemical tags and fluorescence chemiluminescence, are integrated with robotic technology and automated chemical reaction systems to provide a high-throughput, accurate Automated Process Line (APL).
Abstract:
Fast and highly accurate mass spectrometry-based processes for detecting particular nucleic acid molecules and sequences in the molecules are provided. Depending upon the sequence to be detected, the processes, for example, can be used to diagnose a genetic disease or a chromosomal abnormality, a predisposition to a disease or condition, or infection by a pathogen, or for determining identity or heredity. One aspect provides a process for determining whether a target nucleotide is present in a nucleic acid molecule including hybridizing a nucleic acid molecule with a primer oligonucleotide; contacting the hybridized primer with deoxyribonucleoside triphosphates, chain terminating nucleotides and a DNA polymerase, whereby the hybridized primer is extended until a chain terminating nucleotide is incorporated, producing an extended primer, and determining the molecular mass of the extended primer, thereby determining whether the target nucleotide is present in a nucleic acid molecule.
Abstract:
This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.
Abstract:
The invention provides fast and highly accurate mass spectrometer based processes for detecting a particular nucleic acid sequence in a biological sample. Depending on the sequence to be detected, the processes can be used, for example, to diagnose a genetic disease or chromosomal abnormality; a predisposition to a disease or condition, infection by a pathogenic organism, or for determining identity or heredity.
Abstract:
Fast and highly accurate mass spectrometry-based processes for detecting particular nucleic acid molecules and sequences in the molecules are provided. Depending upon the sequence to be detected, the processes, for example, can be used to diagnose a genetic disease or a chromosomal abnormality, a predisposition to a disease or condition, or infection by a pathogen, or for determining identity or heredity.