Abstract:
A rotation rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated above a surface of a substrate; the Coriolis element being able to be induced to vibrate in parallel to a first axis (X); an excursion of the Coriolis element being detectable, based on a Coriolis force in a second axis (Y), which is provided to be essentially perpendicular to the first axis (X); the first and second axes (X, Y) being provided parallel to the surface of the substrate, wherein force-conveying means are provided, the means being provided to convey a dynamic force effect between the substrate and the Coriolis element.
Abstract:
A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
Abstract:
A method for manufacturing a micromechanical structure, and a micromechanical structure. The micromechanical structure encompasses a first micromechanical functional layer, made of a first material, that comprises a buried conduit having a first end and a second end; a micromechanical sensor structure having a cap in a second micromechanical functional layer that is disposed above the first micromechanical functional layer; an edge region in the second micromechanical functional layer, such that the edge region surrounds the sensor structure and defines an inner side containing the sensor structure and an outer side facing away from the sensor structure; such that the first end is located on the outer side and the second end on the inner side.
Abstract:
A yaw rate sensor includes a drive device, at least one mass element which is connected to the drive device, and at least one detection electrode for detecting a motion of the mass element. The mass element has a base layer and at least one web which is situated on the base layer. Also, a method for manufacturing a mass element.
Abstract:
A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (Ω). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44). In the yaw rate sensor (10) and also in the method, the readout of the response signal (47) in relation to a processing direction (45) of the test signal (42) is provided between a feed point (48) for a test signal (42) and an actuator (38) for feeding back a deflection (40) of the movable mass structure (12).
Abstract:
A micropatterned component, for measuring accelerations and/or yaw rates, including a substrate having a principal plane of extension of the substrate, an electrode, and a further electrode; the electrode having a principal plane of extension of the electrode, and the further electrode having a principal plane of extension of the further electrode; the principal plane of extension of the electrode being set parallelly to a normal direction perpendicular to the principal plane of extension of the substrate; the principal plane of extension of the further electrode being set parallelly to the normal direction; the electrode having an electrode height extending in the normal direction; the electrode having a flow channel extending completely through the electrode in a direction parallel to the principal plane of extension of the substrate; the flow channel having a channel depth extending parallelly to the normal direction; the channel depth being less than the electrode height.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
Abstract:
A micromechanical acceleration sensor is described which includes a substrate and a seismic mass which is movably situated with respect to the substrate in a detection direction. The micromechanical sensor includes at least one damping device for damping motions of the seismic mass perpendicular to the detection direction.
Abstract:
In a yaw rate sensor with a substrate having a main extent plane and with a first and second partial structure disposed parallel to the main extent plane, the first partial structure includes a first driving structure and the second partial structure includes a second driving structure, the first and second partial structure being excitable by a driving device, via the first and second driving structure, into oscillation parallel to a first axis parallel to the main extent plane, the first partial structure having a first Coriolis element and the second partial structure having a second Coriolis element, the yaw rate sensor being characterized in that the first and second Coriolis elements are displaceable by a Coriolis force parallel to a second axis, which is perpendicular to the first axis, and parallel to a third axis, which is perpendicular to the first and second axis, the second axis extending parallel to the main extent plane, and the first Coriolis element being connected to the second Coriolis element via a coupling element.