Abstract:
An unscented Kalman filter is used to enable sensor calibration independently of the actual design of the subject sensors. By utilizing an unscented Kalman filter, an underlying calibration methodology is developed that is sensor-unspecific, such that a single calibration methodology and related systems may be used to calibrate various sensors, without the need to re-calculate a calibration factor for each specific sensor, and without the need to design a separate filtering mechanism to compensate for noise. In this way, various calibration inputs can be allowed to change over time without the need to change the codebase on which the calibration methodology otherwise operates. In multi-electrode systems, the methodology may incorporate a fusion algorithm to provide a single, fused sensor glucose value. The fusion algorithm may incorporate, and/or work in conjunction with, Electrochemical Impedance Spectroscopy (EIS) procedures.
Abstract:
Medical devices and related patient management systems and parameter modeling methods are provided. An exemplary method involves obtaining, by a computing device, historical measurements of a condition in a body of the patient previously provided by a sensing device, obtaining, by the computing device, historical operational context information associated with preceding operation of one or more of an infusion device and the sensing device, obtaining, by the computing device, historical values for a parameter from one or more of the infusion device and the sensing device, determining, by the computing device a patient-specific model of the parameter based on relationships between the historical measurements, the historical operational context information and the historical values, and providing, by the computing device via a network, the patient-specific model to one of the infusion device, the sensing device or a client device.
Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
Electrochemical Impedance Spectroscopy (EIS) is used in conjunction with continuous glucose monitors and continuous glucose monitoring (CGM) to enable in-vivo sensor calibration, gross (sensor) failure analysis, and intelligent sensor diagnostics and fault detection. An equivalent circuit model is defined, and circuit elements are used to characterize sensor behavior.
Abstract:
A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
Abstract:
Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
Abstract:
Electrochemical Impedance Spectroscopy (EIS) is used in conjunction with continuous glucose monitors and continuous glucose monitoring (CGM) to enable in-vivo sensor calibration, gross (sensor) failure analysis, and intelligent sensor diagnostics and fault detection. An equivalent circuit model is defined, and circuit elements are used to characterize sensor behavior.
Abstract:
Electrochemical Impedance Spectroscopy (EIS) is used in conjunction with continuous glucose monitors and continuous glucose monitoring (CGM) to enable in-vivo sensor calibration, gross (sensor) failure analysis, and intelligent sensor diagnostics and fault detection. An equivalent circuit model is defined, and circuit elements are used to characterize sensor behavior.
Abstract:
A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.