Abstract:
Antifuses having two or more materials with differing work function values may be fabricated as recessed access devices and spherical recessed access devices for use with integrated circuit devices and semiconductor devices. The use of materials having different work function values in the fabrication of recessed access device antifuses allows the breakdown areas of the antifuse device to be customized or predicted.
Abstract:
Microelectronic devices with through-silicon vias and associated methods of manufacturing such devices. One embodiment of a method for forming tungsten through-silicon vias comprising forming an opening having a sidewall such that the opening extends through at least a portion of a substrate on which microelectronic structures have been formed. The method can further include lining the sidewall with a dielectric material, depositing tungsten on the dielectric material such that a cavity extends through at least a portion of the tungsten, and filling the cavity with a polysilicon material.
Abstract:
Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
Abstract:
Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
Abstract:
A memory device includes a memory die bonded to a logic die via a wafer-on-wafer bond. A controller of the memory device that is coupled to the memory die can activate a row of the memory die. Responsive to activating the row, a sense amplifier stripe of the memory die can latch a first plurality of signals. A transceiver can route a second plurality of signals from the sense amplifier stripe to the logic die.
Abstract:
A method of forming a microelectronic device comprises forming a microelectronic device structure comprising a first control logic region comprising first control logic devices, and a first memory array region vertically overlying the first control logic region and comprising an array of vertically extending strings of memory cells. An additional microelectronic device structure comprising a semiconductive material is attached to an upper surface of the microelectronic device structure. A portion of the semiconductive material is removed. A second control logic region is formed over the first memory array region. The second control logic region comprises second control logic devices and a remaining portion of the semiconductive material. A second memory array region is formed over the second control logic region. The second memory array region comprises an array of resistance variable memory cells. Microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
A memory device includes a memory die bonded to a logic die via a wafer-on-wafer bond. A controller of the memory device that is coupled to the memory die can activate a row of the memory die. Responsive to activating the row, a sense amplifier stripe of the memory die can latch a first plurality of signals. A transceiver can route a second plurality of signals from the sense amplifier stripe to the logic die.
Abstract:
An electronic device includes one or more capacitors adjacent to a base material. The one or more capacitors comprise at least one electrode extending horizontally within the base material, and additional electrodes extending vertically within the base material and contacting the at least one electrode. The at least one electrode is located below and isolated from an upper surface of the base material. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
Abstract:
A method of forming a microelectronic device includes forming a first assembly including a semiconductor base structure, a first circuitry region including first devices at a first boundary of the semiconductor base structure, and a second circuitry region including second devices at a second boundary of the semiconductor base structure vertically offset from the first boundary. A microelectronic device structure is formed and includes a stack structure including tiers individually including conductive material and insulative material vertically adjacent the conductive material, and cell pillar structures including semiconductor material vertically extending through the stack structure. The first assembly is attached to the microelectronic device structure to form a second assembly. Microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
Methods, systems, and devices for transistor architectures in coupled semiconductor systems are described. A memory system may be formed from multiple semiconductor components (e.g., multiple dies, multiple wafers) that are coupled together, with different semiconductor components implementing different techniques for transistor formation. For example, a first die may include a memory array and first circuitry configured to access the memory array, and a second die coupled with the first die may include second circuitry configured to access the memory array. The first circuitry may include transistors formed in accordance with a first fabrication technique (e.g., to form a first type of transistors) and the second circuitry may include transistors formed in accordance with a second fabrication technique (e.g., to form a second type of transistors). The dies may be coupled in a manner that provides an electrical coupling between the first circuitry and the second circuitry.