Abstract:
A semiconductor device includes a substrate including traces, wherein the traces protrude above a top surface of the substrate; a prefill material over the substrate and between the traces; a die attached over the substrate; and a wafer-level underfill between the prefill material and the die.
Abstract:
Disclosed is a microelectronic device assembly comprising a substrate having conductors exposed on a surface thereof. Two or more microelectronic devices are stacked on the substrate, each microelectronic device comprising an active surface having bond pads operably coupled to conductive traces extending over a dielectric material to via locations beyond at least one side of the stack, and vias extending through the dielectric materials at the via locations and comprising conductive material in contact with at least some of the conductive traces of each of the two or more electronic devices and extending to exposed conductors of the substrate. Methods of fabrication and related electronic systems are also disclosed.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
A semiconductor device assembly that includes a substrate having a first side and a second side, the first side having at least one dummy pad and at least one electrical pad. The semiconductor device assembly includes a first semiconductor device having a first side and a second side and at least one electrical pillar extending from the second side. The electrical pillar is connected to the electrical pad via solder to form an electrical interconnect. The semiconductor device assembly includes at least one dummy pillar extending from the second side of the first semiconductor device and a liquid positioned between an end of the dummy pillar and the dummy pad. The surface tension of the liquid pulls the dummy pillar towards the dummy pad. The surface tension may reduce or minimize a warpage of the semiconductor device assembly and/or align the dummy pillar and the dummy pad.
Abstract:
A semiconductor device assembly that includes a semiconductor device having a first side and a second side connected to a substrate. A layer of self-depolymerizing polymer connects the semiconductor device to the substrate. The layer of self-depolymerizing layer is positioned between the first side of the semiconductor device and the substrate. The layer of self-depolymerizing polymer is configured to selectively release the substrate from the semiconductor device. The layer of self-depolymerizing polymer selectively depolymerizes to release the substrate. The substrate enables processing to occur on the second side of the semiconductor device. A material may be applied to a portion of the layer of self-depolymerizing polymer causing the entire layer to depolymerize and release the substrate from the semiconductor device. Energy may be applied to a portion of the layer of self-depolymerizing polymer causing the entire layer to depolymerize and release the substrate from the semiconductor device.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate.
Abstract:
Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate. A heat sink may be located on a side of the uppermost semiconductor die opposite the substrate. A passivation material may be located between the uppermost semiconductor die and the heat sink.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. The stack of semiconductor dice may include vias extending through each semiconductor die of the stack for electrically interconnecting the semiconductor dice in the stack to one another and to the substrate. Another semiconductor die may be electrically connected to the stack of semiconductor dice and may be located on a side of the stack of semiconductor dice opposing the substrate. The other semiconductor die may be a heat-generating component configured to generate more heat than each semiconductor die of the stack of semiconductor dice. Electrical connectors may be located laterally adjacent to the vias and may form electrical connections between the substrate and the other semiconductor die in isolation from integrated circuitry of the semiconductor dice in the stack.
Abstract:
Temporary adhesives include a thermoplastic polymer comprising from about 30% by weight to about 80% by weight of the temporary adhesive, a solvent comprising from about 20% by weight to about 70% by weight of the temporary adhesive, and a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive. Methods of processing a semiconductor device wafer include bonding the semiconductor device wafer to a surface of a carrier substrate using a temporary adhesive including a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive, thinning the semiconductor device wafer, and, while the temporary adhesive remains on the surface of the carrier substrate proximate a peripheral edge thereof, subjecting the thinned semiconductor device wafer to one or more back side processing operations. Methods of forming a thinned semiconductor wafer include using such a temporary adhesive.