Abstract:
A semiconductor device includes a semiconductor chip having a multilayer interconnect, a first spiral inductor formed in the multilayer interconnect, and a second spiral inductor formed in the multilayer interconnect. The first spiral inductor and the second spiral inductor collectively include a line, the line being spirally wound in a first direction in the first spiral inductor toward outside of the first spiral inductor, and being spirally wound in a second direction in the second spiral inductor toward inside of the second spiral inductor. The first direction and the second direction are opposite directions.
Abstract:
A semiconductor device including a first conductor layer, a second conductor layer formed over the first conductor layer, a third conductor layer formed over the second conductor layer, a gate trench which passes through the third conductor layer and is formed in the second conductor layer, a first insulating film formed on an inner wall of the gate trench, a second insulating film formed on the inner wall of the gate trench, a first buried conductor layer formed in the gate trench, a gate electrode formed in the gate trench, a fourth conductor layer of the second conductivity type formed on a lower end of the first buried conductor layer and a lower end of the gate trench, and a fifth conduction layer of the first conductivity type formed over the third conductor layer. The first insulating film is thicker than the second insulating film.
Abstract:
A semiconductor device in which the concentration of an electric field is suppressed in a region overriding a drain region and a source region. A drain region is formed in a first region, a source region is formed in a second region. A field oxide film surrounds the first region in a plan view. A metal interconnect situated over a field oxide film. The metal interconnect formed of a metal having an electric resistivity at 25° C. of 40 μΩ·cm or more and 200 μΩ·cm or less. Further, the metal interconnect is repeatedly provided spirally in a direction along the edges of the first region. Further, the metal interconnect is electrically connected at the innermost circumference with the drain region, and is connected at the outermost circumference to the source region or a ground potential.
Abstract:
To suppress the noise caused by an inductor leaks to the outside, and also to be configured such that magnetic field intensity change reaches the inductor. An inductor surrounds an internal circuit in a planar view and also is coupled electrically to the internal circuit. The upper side of the inductor is covered by an upper shield part and the lower side of the inductor is covered by a lower shield part. The upper shield part is formed by the use of a multilayered wiring layer. The upper shield part has plural first openings. The first opening overlaps the inductor in the planar view.
Abstract:
An object of the present invention is to suppress an error in the value detected by a pressure sensor, which may be caused when environmental temperature varies. A semiconductor substrate has a first conductivity type. A semiconductor layer is formed over a first surface of the semiconductor substrate. Each of resistance parts has a second conductivity type, and is formed in the semiconductor layer. The resistance parts are spaced apart from each other. A separation region is a region of the first conductivity type formed in the semiconductor layer, and electrically separates the resistance parts from each other. A depressed portion is formed in a second surface of the semiconductor substrate, and overlaps the resistance parts, when viewed planarly. The semiconductor layer is an epitaxial layer.
Abstract:
A semiconductor device includes a semiconductor chip including a main surface, an internal circuit including a plurality of transistors, formed on the main surface, a bonding pad electrically connected to the internal circuit, formed on the main surface, an inductor for communicating an external device in a non-contact manner, formed on the main surface, and a seal ring formed along an outer peripheral edge of the semiconductor chip to surround the internal circuit and the bonding pad in a plan view. The inductor has a configuration to surround the internal circuit and the bonding pad in the plan view and along the seal ring. The inductor is arranged inside the seal ring.
Abstract:
A first semiconductor chip and a second semiconductor chip are overlapped with each other in a direction in which a first multilayer interconnect layer and a second multilayer interconnect layer are opposed to each other. When seen in a plan view, a first inductor and a second inductor are overlapped. The first semiconductor chip and the second semiconductor chip have non-opposed areas which are not opposed to each other. The first multilayer interconnect layer has a first external connection terminal in the non-opposed area, and the second multilayer interconnect layer has a second external connection terminal in the non-opposed area.
Abstract:
A semiconductor device includes a substrate having a main surface and a rear surface, a transistor formed over a side of the main surface, an insulator layer formed over a side of the main surface, an inductor formed over the insulator layer and a side of the main surface, a tape overlapping the inductor and formed over a side of the main surface, and a bonding pad formed over the insulating layer and a side of the main surface. The tape is selectively formed over an area without the bonding pad.
Abstract:
In semiconductor device, a field plate portion having a high concentration p-type semiconductor region, a low concentration p-type semiconductor region having a lower impurity concentration than the high concentration p-type semiconductor region and a high concentration n-type semiconductor region is provided. Then, the high concentration p-type semiconductor region is electrically connected to the source region while the high concentration n-type semiconductor region is electrically connected to the drain region.
Abstract:
A semiconductor device includes a semiconductor substrate, a gate dielectric film formed on the semiconductor substrate, a gate electrode formed on the gate dielectric film, a field plate portion which is integrally formed with the gate electrode, a step insulating film in contact with the field plate portion, a high dielectric constant film in contact with the step insulating film and having a higher dielectric constant than silicon.