Abstract:
Disclosed are semiconductor packages and methods of fabricating the same. The semiconductor package comprises a first wiring layer, a first semiconductor substrate on the first wiring layer, a first dielectric layer on the first semiconductor substrate, a landing pad in the first wiring layer, a through hole that penetrates the first semiconductor substrate, the first dielectric layer, and the first wiring layer and exposes the landing pad, the through hole including a first hole and a second hole on a bottom end of the first hole, the second hole having a maximum diameter less than a minimum diameter of the first hole, and a mask layer on an upper lateral surface of the through hole.
Abstract:
A semiconductor device includes a semiconductor substrate with first and second surfaces facing each other, an etch stop pattern in a trench formed in the first surface of the semiconductor substrate, a first insulating layer on the first surface of the semiconductor substrate, and a through via penetrating the semiconductor substrate and the first insulating layer. The etch stop pattern surrounds a portion of a lateral surface of the through via.
Abstract:
Provided are semiconductor devices with a through electrode and methods of fabricating the same. The methods may include forming a via hole at least partially penetrating a substrate, the via hole having an entrance provided on a top surface of the substrate, forming a via-insulating layer to cover conformally an inner surface of the via hole, forming a buffer layer on the via-insulating layer to cover conformally the via hole provided with the via-insulating layer, the buffer layer being formed of a material whose shrinkability is superior to the via-insulating layer, forming a through electrode to fill the via hole provided with the buffer layer, and recessing a bottom surface of the substrate to expose the through electrode.
Abstract:
Provided are a semiconductor chip and a method of manufacturing the same. The semiconductor chip includes a substrate having a first side and a second side facing each other, and a through electrode being disposed in a hole penetrating the substrate, wherein an opening surrounded by the through electrode is disposed in the hole, wherein the opening comprises a first end adjacent to the first side of the substrate and a second end adjacent to the second side of the substrate.
Abstract:
Provided are semiconductor devices having through electrodes and methods of fabricating the same. The method includes providing a substrate including top and bottom surfaces facing each other, forming a hole and a gap extending from the top surface of the substrate toward the bottom surface of the substrate, the gap surrounding the hole and being shallower than the hole, filling the hole with an insulating material, forming a metal interconnection line on the top surface of the substrate on the insulating material, recessing the bottom surface of the substrate to expose the insulating material, removing the insulating material to expose the metal interconnection line via the hole, filling the hole with a conductive material to form a through electrode connected to the metal interconnection line, recessing the bottom surface of the substrate again to expose the gap, and forming a lower insulating layer on the bottom surface of the substrate.
Abstract:
A semiconductor device includes a semiconductor substrate having a first surface adjacent to an active layer; a first insulating layer disposed on the first surface of the semiconductor substrate; a second insulating layer disposed on the first insulating layer; an etch stop structure interposed between the first insulating layer and the second insulating layer and including a plurality of etch stop layers; a contact wiring pattern disposed inside the second insulating layer and surrounded by at least one etch stop layer of the plurality of etch stop layers; and a through electrode structure configured to pass through the semiconductor substrate, the first insulating layer, and at least one etch stop layer of the plurality of etch stop layers in a vertical direction and contact the contact wiring pattern.
Abstract:
Disclosed is a semiconductor device comprising a semiconductor substrate, an under-bump pattern on the semiconductor substrate and including a first metal, a bump pattern on the under-bump pattern, and an organic dielectric layer on the semiconductor substrate and in contact with a sidewall of the bump pattern. The bump pattern includes a support pattern in contact with the under-bump pattern and having a first width, and a solder pillar pattern on the support pattern and having a second width. The first width is greater than the second width. The support pattern includes at least one of a solder material and an intermetallic compound (IMC). The intermetallic compound includes the first metal and the solder material.
Abstract:
A semiconductor package includes first to fourth semiconductor chips sequentially stacked on one another. A backside of a third substrate of the third semiconductor chip may be arranged to face a backside surface of a second substrate of the second semiconductor chip such that the third substrate and a second backside insulation layer provided on the backside surface of the second substrate are bonded directly to each other, or the backside of the third substrate may be arranged to face a front surface of the second substrate such that the third substrate and a second front insulation layer provided on the front surface of the second substrate are bonded directly to each other.
Abstract:
A semiconductor device includes a substrate having a first surface on which an active region is disposed, and a second surface opposite the first surface, a buried conductive line extending in one direction and having a portion buried in the active region, an insulating portion covering the buried conductive line, a contact structure disposed on the insulating portion and connected to the buried conductive line, a through-hole extending from the second surface to the insulating portion and exposing the buried portion of the buried conductive line, an insulating isolation film disposed on a side surface of the buried conductive line and exposing a bottom surface of the buried portion and a side surface adjacent to the bottom surface, a through-via contacting the bottom surface and the adjacent side surface of the buried conductive line, an insulating liner surrounding the through-via.
Abstract:
A semiconductor device includes a semiconductor substrate having a first surface and a second surface, which are opposite to each other, an active pattern protruding from the first surface of the semiconductor substrate, the active pattern including a source/drain region, a power rail electrically connected to the source/drain region, a power delivery network disposed on the second surface of the semiconductor substrate, and a penetration via structure penetrating the semiconductor substrate and electrically connected to the power rail and the power delivery network. The penetration via structure includes a first conductive pattern electrically connected to the power rail and a second conductive pattern electrically connected to the power delivery network. The first conductive pattern includes a material different from the second conductive pattern.