Abstract:
A backlight unit for a liquid crystal display device, the backlight unit including: an light emitting diode (“LED”) light source; a light conversion layer disposed separate from the LED light source to convert light emitted from the LED light source to white light and to provide the white light to the liquid crystal panel; and a light guide panel disposed between the LED light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, and wherein the polymer matrix includes a first polymerized polymer of a first monomer including at least two thiol (—SH) groups, each located at a terminal end of the first monomer, and a second monomer including at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer.
Abstract:
A composition comprising: a first monomer comprising at least three thiol groups, each located at a terminal end of the first monomer, wherein the first monomer is represented by the following Chemical Formula 1-1: a second monomer comprising at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer, wherein the second monomer is represented by the following Chemical Formula 2: wherein in Chemical Formulae 1 and 2 groups R2, Ra to Rd, Ya to Yd, L1′ and L2, X and variables k3 and k4 are the same as described in the specification, and a first light emitting particle, wherein the first light emitting particle consists of a semiconductor nanocrystal comprising a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, or a combination thereof, wherein the first light emitting particle has a core/shell structure having a first semiconductor nanocrystal being surrounded by a second semiconductor nanocrystal, and the first semiconductor nanocrystal being different from the second semiconductor nanocrystal.
Abstract:
A light emitting diode that includes: a light source; a buffer layer disposed on the light source and including a first matrix polymer; a polymer layer disposed on the buffer layer and including an organic/inorganic hybrid polymer; and an emission layer disposed on the polymer layer and including a light emitting particle dispersed in a second matrix polymer, wherein one selected from the light source, the buffer layer, the emission layer, and a combination thereof includes one selected from sulfurous component, a nitrogenous component, and a combination thereof.
Abstract:
A quantum dot having a core including a first semiconductor nanocrystal including zinc, selenium, and tellurium, and a semiconductor nanocrystal shell disposed on the surface of the core, the shell including zinc, selenium, and sulfur. The quantum dot is configured to emit green light, the quantum dot does not include cadmium, and the quantum dot has a mole ratio Te:Se of tellurium relative to selenium of greater than about 0.05 and less than or equal to about 0.5:1. A method of producing the quantum dot and an electronic device including the same.
Abstract:
A copolymer, including a structural unit represented by Chemical Formula 1, a structural unit represented by Chemical Formula 2, or a combination thereof: wherein R1, R2, R3, X1, X2, and Ar1 are as provided herein.
Abstract:
A quantum dot according to an embodiment includes a core including a first semiconductor nanocrystal including zinc, selenium, and tellurium and a semiconductor nanocrystal shell on the core, the semiconductor nanocrystal shell including a zinc chalcogenide, wherein the quantum dot does not include cadmium, the zinc chalcogenide includes zinc and selenium, the quantum dot further includes gallium and a primary amine having 5 or more carbon atoms, and the quantum dot is configured to emit light having a maximum emission peak in a range of greater than about 450 nanometers (nm) and less than or equal to about 480 nm by excitation light. A method of producing the quantum dot and an electronic device including the same are also disclosed.
Abstract:
A quantum dot including a core that includes a first semiconductor nanocrystal including zinc and selenium, and optionally sulfur and/or tellurium, and a shell that includes a second semiconductor nanocrystal including zinc, and at least one of sulfur or selenium is disclosed. The quantum dot has an average particle diameter of greater than or equal to about 13 nm, an emission peak wavelength in a range of about 440 nm to about 470 nm, and a full width at half maximum (FWHM) of an emission wavelength of less than about 25 nm. A method for preparing the quantum dot, a quantum dot-polymer composite including the quantum dot, and an electronic device including the quantum dot is also disclosed.
Abstract:
A quantum dot light-emitting device including first electrode and a second electrode, a quantum dot layer between the first electrode and the second electrode, a first electron transport layer and a second electron layer disposed between the quantum dot layer and the second electrode. The second electron transport layer is disposed between the quantum dot layer and the first electron transport layer, wherein each of the first electron transport layer and the second electron transport layer includes an inorganic material. A lowest unoccupied molecular orbital energy level of the second electron transport layer is shallower than a lowest unoccupied molecular orbital energy level of the first electron transport layer, and a lowest unoccupied molecular orbital energy level of the quantum dot layer is shallower than a lowest unoccupied molecular orbital energy level of the second electron transport layer. An electronic device including the quantum dot light-emitting device.
Abstract:
A cadmium free quantum dot including a semiconductor nanocrystal core and a semiconductor nanocrystal shell disposed on the core, wherein the quantum dot does not include cadmium and includes indium and zinc, the quantum dot has a maximum photoluminescence peak in a red light wavelength region, a full width at half maximum (FWHM) of the maximum photoluminescence peak is less than or equal to about 40 nanometers (nm), an ultraviolet-visible (UV-Vis) absorption spectrum of the quantum dot includes a valley between about 450 nm to a center wavelength of a first absorption peak, and a valley depth (VD) defined by the following equation is greater than or equal to about 0.2, a quantum dot polymer composite including the same, and a display device including the quantum dot-polymer composite:
Abstract:
A cadmium free quantum dot not including cadmium and including: a semiconductor nanocrystal core comprising indium and phosphorous, a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core and comprising zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell and comprising zinc and sulfur, a composition and composite including the same, and an electronic device.