摘要:
A process-gas supply apparatus for supplying a process gas to a process chamber in which a predetermined processing using the process gas is applied to the object set therein, which comprising a process-gas source for supplying a process gas, a carrier gas source filled with a carrier gas, at least one gas storing section having a predetermined volume and to be filled with the process gas, a carrier-gas introducing pipe connecting the carrier gas source to the process chamber to introduce the carrier gas from the carrier gas source to the process chamber, a process-gas releasing pipe connected to the process-gas source, a process-gas filling circuit having at least one pipe which connects the at least one gas storing section to the process-gas releasing pipe and is provided with at least one open/shut valve, a process gas releasing circuit having at least one pipe which connects the gas storing section to the carrier-gas introducing pipe and is provided with at least one open/shut valve, a controlling section for controlling not only a communication state between the process-gas releasing pipe and the gas storing section but also a communication state between the carrier-gas introducing pipe and the gas storing section, by switchover of the open/shut valves attached to the process-gas filling circuit and the process gas releasing circuit.
摘要:
A method for forming a CVD film, comprising the steps of loading at least one object to be processed into a processing chamber and positioning the object on a support base in the processing chamber, after positioning the object in the processing chamber, introducing a process gas from a corresponding gas supply source via a corresponding gas introducing pipe into the processing chamber and forming a film by a chemical vapor deposition method on the object in the processing chamber, after forming the film on the object, unloading the object from the processing chamber, after unloading the object from the processing chamber, dry-cleaning an inside of the processing chamber, and after dry-cleaning the inside of the processing chamber, introducing an inert gas via a corresponding gas introducing pipe into the chamber to purge those particles deposited as a residue in the gas introducing pipe and inside of the chamber.
摘要:
A trap body is removably attached in the housing inserted in that portion of the exhaust passage which is situated on the upstream side of a vacuum pump, and has cooling fins for cooling the tramp materials in the exhaust gas brought into contact with the cooling means, thereby liquefying the tramp materials. Therefore, the tramp materials, such as unaffected process gases, products of reaction, etc., contained in the exhaust gas flowing through the exhaust passage, are cooled and liquefied when they are touched by the trap body cooled by the cooling unit, and adhere to the surface of the trap body. Thus, the tramp materials in the exhaust gas can be removed lest they damage the vacuum pump on the downstream side or close up the exhaust passage.
摘要:
A thin film forming method in which a thin film is formed on a surface of a target object to be processed to fill a recess formed in the surface of the target object includes the steps of forming a metal layer for filling on the surface of the target object to fill the recess formed in the surface of the target object and forming a metal film for preventing diffusion on an entire surface of the target object to cover the metal layer for filling. The thin film forming method further includes the step of annealing the target object having the metal film for preventing diffusion formed thereon.
摘要:
A metal recovery apparatus recovers metal components from an exhaust gas exhausted from a processing chamber in which a thin film is formed on the surface of a target substrate by using a source gas formed of an organic metal compound serving as a source, and scrubs the exhaust gas. The metal recovery apparatus 66 includes a trap unit having an adsorption member for attaching thereon metal components included in the source gas by heating the exhaust gas and thus thermally decomposing an unreacted source gas included in the exhaust gas; and the scrubbing unit including a catalyzer for oxidizing and thus scrubbing harmful gas components included in the exhaust gas that has flowed through the trap unit.
摘要:
A CVD method for forming a metal film on a substrate by using a metal carbonyl gas includes a preparing step for setting a vacuum chamber at a vacuum pressure and heating the substrate in the vacuum chamber to a first temperature where the metal carbonyl gas is decomposed. Also included are a supplying step for supplying the metal carbonyl gas into the vacuum chamber while exhausting the vacuum chamber with a first vacuum pumping speed and a removing step for removing a decomposed gas of the metal carbonyl gas by stopping supplying of the metal carbonyl gas and quickly exhausting the vacuum chamber with a second vacuum pumping speed sufficiently higher than the first vacuum pumping speed. The supplying step and the removing step can be repeatedly as desired.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要翻译:一种通过热化学气相沉积(TCVD)工艺在半导体衬底上沉积金属层的方法。 TCVD工艺利用含有羰基金属前体的稀释工艺气体的高流速来沉积金属层。 在本发明的一个实施方案中,羰基金属前体可以选自W(CO)6,Ni(CO)4,Mo(CO)6,Co 2(CO)8,Rh 4(CO)12, Re 2(CO)10,Cr(CO)6和Ru 3(CO)12)。 在本发明的另一个实施方案中,提供了一种方法,用于在约410℃的基底温度和约200mTorr的室压下从包含W(CO)6前体的工艺气体中沉积W层。
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A cleaning gas includes HF gas whose concentration is greater than or equal to 1 vol % and oxygen containing gas whose concentration ranges from 0.5 to 99 vol %. The oxygen containing gas includes at least one of O2 gas, O3 gas, N2O gas, NO gas, CO gas and CO2 gas. The cleaning gas is employed to remove a deposited material generated in a vacuum treatment apparatus for producing a thin film of at least one of Ti, W, Ta, Ru, Ir, a compound thereof and an alloy thereof.