Abstract:
An object of the present invention is to provide a method capable of producing a cycloalkanol and/or a cycloalkanone with a favorable selectivity coefficient by oxidizing a cycloalkane with a favorable conversion ratio.Disclosed is a method for producing a cycloalkanol and/or a cycloalkanone, which comprises oxidizing a cycloalkane with oxygen in the presence of a mesoporous silica which contains at least one transition metal and has been also subjected to contact treatment with an amine and/or ammonia. Preferably, a crystal obtained by mixing a compound containing the metal, a silicon compound, a structure-directing agent and water is subjected to contact treatment with an amine and/or ammonia and then fired to obtain a mesoporous silica, and a cycloalkane is oxidized with oxygen in the presence of the mesoporous silica.
Abstract:
A sulfur resistant catalyst is taught having noble metal nano-particles contained in a zeolite cage having a final pore size of between about 2.9 Å and about 3.5 Å. The zeolite cage is either directly synthesized, or the final pore size of the zeolite cage is reduced by post-treatments selected from chemical vapour deposition, chemical liquid deposition, cation exchange and combinations thereof to allow passage of hydrogen molecules into the cage while excluding organic sulfur molecules. Disassociated hydrogen species from reaction with the noble metal spill over through the zeolite pores to induce hydrogenation and to regenerate neighboring catalyst supports. A method is also taught for producing a sulfur resistant catalyst having noble metal nano-particles. The method involves either synthesizing a zeolite cage having a final pore size of between about 2.9 Å and about 3.5 Å or reducing the size of pores in the zeolite cage by a post treatment selected from chemical vapour deposition, chemical liquid deposition, cation exchange and combinations thereof.
Abstract:
An object of the present invention is to provide a process capable of producing cycloalkanol and/or cycloalkanone with a favorable selectivity by oxidizing cycloalkane with a favorable conversion.Disclosed is a process for producing cycloalkanol and/or cycloalkanone, which comprises oxidizing cycloalkane with oxygen in the presence of mesoporous silica, wherein (1) the mesoporous silica contains at least one transition metal, and (2) a ratio of total volume of mesoporous silica particles having a particle diameter of 20 μm or less to total volume of entire mesoporous silica particles is 25% or more in the mesoporous silica.
Abstract:
An object of the present invention is to provide a method capable of producing cycloalkanol and/or cycloalkanone with a favorable selectivity by oxidizing cycloalkane with a favorable conversion.A cycloalkanol and/or cycloalkanone are produced by oxidizing cycloalkane with oxygen in the presence of mesoporous silica which contains at least one metal selected from metals of Groups 5 to 10 of the Periodic Table and which is also subjected to a contact treatment with an organosilicon compound. The metal is preferably at least one metal selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, ruthenium and palladium, and the mesoporous silica is preferably MCM-41 type mesoporous silica.
Abstract:
A process for selectively making 2-alkenes from a NAO using a mesoporous catalyst that has been surface modified with a Brönsted acid compound. The Brönsted acid compound has a reactive silane connector, an organic linking group, and a Brönsted acid group. The mesoporous catalyst has an average pore diameter in a range of about 12 to about 100 Angstroms and a surface area of between about 400 to about 1400 m2/gram.
Abstract:
The present invention provides an adenine modified solid, ordered, mesoporous, bifunctional, organo-inorganic silica-based catalyst, its method of preparation and also a process for the production of cyclic carbonates of the formula hereinbelow wherein R═H, CH2Cl, CH3, C4H9, C6H11, C6H5
Abstract translation:本发明提供腺嘌呤改性固体,有序,介孔,双功能,有机 - 无机二氧化硅基催化剂,其制备方法以及下式的环状碳酸酯的制备方法,其中RH,CH 2, C 1,CH 3,C 4 H 9,C 6 H 11, C 6,C 6 H 5
Abstract:
Increased yields of middle distillate and jet fuel and increased catalyst activity are obtained in a hydrocracking process by the use of a catalyst containing a beta zeolite and a Y zeolite having a unit cell size from 24.37 to 24.43 angstrom. The catalyst has a relatively high amount of Y zeolite relative to beta zeolite.
Abstract:
A repeated “soak and dry” selectivation process for preparing a modified metallosilicate catalyst composite is disclosed comprising of a mixture of amorphous silica, alumina and a pore size controlled metallosilicate useful for alkylaromatic conversion. The process comprises (a) contacting an intermediate pore metallosilicate with an organosilicon compound in a solvent for a specific duration and then recovering the solvent, (b) combining the organosilicon compound treated metallosilicate with water and then drying the catalyst, (c), repeating the steps a) and b) above and (d) calcining the catalyst in an oxygen containing atmosphere sufficient to remove the organic material and deposit siliceous matter on the metallosilicate. In a another embodiment, when the organosilicon compound is water soluble, step (b) may be avoided.
Abstract:
A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y”—USY), mordenite, Zeolite L, ZSM-5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.
Abstract:
A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y”—USY), mordenite, Zeolite L, ZSM-5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.