Abstract:
The present disclosure is directed to an agricultural work vehicle including: a vehicle body configured to support an engine; a transmission configured to perform shifting on drive generated by the engine; a braking unit implemented as a hydraulic brake or a mechanical brake, and configured to reduce the travelling speed of the vehicle body and control the deceleration of each of left and right wheels; an operation unit provided in the vehicle body; and a control unit configured to control the transmission and the braking unit; wherein the control unit includes a conjunctive operation module configured to control the braking unit and the forward-reverse clutch so that both the braking rate at which the braking unit reduces the travelling speed of the vehicle body and the drive transmission rate at which the forward-reverse clutch transmits drive are adjusted.
Abstract:
A vehicle includes a brake-by-wire system having a brake pedal and a first sensor configured to output a signal indicative of a position of the brake pedal. A controller is in communication with the sensor and is programmed to enable and disable a one-pedal driving mode based on a user-selected setting. The controller is further programmed to, in response to the signal of the first sensor being valid and the one-pedal driving mode being disabled, enable the one-pedal driving mode regardless of the user-selected setting.
Abstract:
A brake control device and a control method, which are capable of improving responsiveness of vehicle braking at a low temperature. The brake control device configured to brake a vehicle by a hydraulic pressure control mechanism configured to apply hydraulic pressure from a master cylinder to a wheel cylinder includes: a master cylinder hydraulic pressure detecting unit configured to detect or calculate a physical quantity relating to hydraulic pressure generated in the master cylinder; a wheel cylinder hydraulic pressure detecting unit configured to detect or calculate a physical quantity relating to hydraulic pressure of the wheel cylinder; and a control unit configured to control whether to output a braking instruction signal to another braking unit in accordance with a difference between the detected or calculated physical quantity of the hydraulic pressure of the master cylinder and the detected or calculated physical quantity of the hydraulic pressure of the wheel cylinder.
Abstract:
A vehicle is provided with an engine to provide drive torque and a braking system to provide brake torque. The vehicle is also provided with a controller that is programmed to limit vehicle speed to a target speed by controlling at least one of the engine and the braking system to modify its output torque, the target speed being dependent on brake pedal position and a clearance distance between the vehicle and an external object.
Abstract:
A braking method for a motor vehicle including a hybrid or electric propulsion system, a hydraulic braking system, an electric braking system recuperating electrical energy, a brake pedal, systems to assist with driving of the vehicle, and a vehicle electronic stability control system. The method includes: selecting one of torque setpoints from between a pedal torque setpoint relating to position of or force supplied to the brake pedal, and a torque setpoint relating to the driver assistance systems; formulating a hydraulic braking torque setpoint independent of a state of the pedal by the electric or hybrid propulsion system; acquiring information relating to stability of the vehicle; formulating a hydraulic braking torque setpoint and an electric braking torque setpoint intended for the hybrid or electric propulsion system based on the selected torque setpoint, the independent hydraulic braking torque setpoint, and the information relating to the vehicle stability.
Abstract:
The present device relates to a driving dynamics control system for vehicles, including at least one signal distribution to which vehicle data, environment data and data regarding the driver's request are sent in the form of input data, and including several controllable or regulatable subsystems which modify the dynamics of the vehicle such as a driver-independently adjustable steering system, a driver-independently adjustable chassis, a driver-independently adjustable brake, and a driver-independently adjustable driving track. The system is characterized in that the data of the signal distribution is sent to a central determining unit (driving condition detection, driver request detection), in that the central determining unit determines from the data of the signal distribution a central control target, and these items of data regarding the central control target are sent to a central regulating variable distribution or a central driving condition controller, respectively, which, in an interactive communication with the subsystems, actuates these subsystems in such a way that the control target is realized by the subsystems on the vehicle.
Abstract:
A control input for operating an actual vehicle actuator and a control input for operating a vehicle model are determined by an FB distribution law based on a difference between a reference state amount determined by a vehicle model and an actual state amount of an actual vehicle such that the state amount error is approximated to zero, and then an actuator device of the actual vehicle and the model vehicle are operated based on the control inputs. The FB distribution law determines a control input for operating the model such that a state amount error is approximated to zero while restraining a predetermined restriction object amount from deviating from a permissible range. A vehicle control device capable of enhancing robustness against disturbance factors or their changes while performing operation control of actuators that is as suited to behaviors of an actual vehicle as possible is provided.
Abstract:
An integrated stability control system using the signals from an integrated sensing system for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include an IMU sensor cluster, a steering angle sensor, wheel speed sensors, any other sensors required by subsystem controls. The signals used in the integrated stability controls include the sensor signals; the roll and pitch attitudes of the vehicle body with respect to the average road surface; the road surface mu estimation; the desired sideslip angle and desired yaw rate from a four-wheel reference vehicle model; the actual vehicle body sideslip angle projected on the moving road plane; and the global attitudes. The demand yaw moment used to counteract the undesired vehicle lateral motions (under-steer or over-steer or excessive side sliding motion) are computed from the above-mentioned variables. The braking control is a slip control whose target slip ratios at selective wheels or wheel are directly generated from the request brake pressures computed from the demand yaw moment.
Abstract:
Disclosed is a device for influencing the driving dynamics of a vehicle with an electronic brake system. The device includes a brake actuator for adjusting a brake torque at least one wheel brake of the vehicle. The brake torque can be determined in a torque distributing device according to a yaw torque requirement. A first control unit can be activated in the presence of a critical driving condition as is used to determine a first yaw torque requirement due to driving dynamics control. A management device (12) has a second control unit, which can be activated in the presence of a subcritical driving condition, and a second yaw torque requirement (R:D_GM) can be determined by the second control unit due to driving dynamics control, and the second yaw torque requirement (R:D_GM) can be sent to the torque distributing device (20), and an activated state of the first control unit a signal (I:EBS_Status; R: D_GM; R:[S1, S2, . . . ]) can be sent from the electronic brake system (2) to the management device (12), which causes deactivation of the second control unit.
Abstract:
A lane departure prevention apparatus is configured for reducing risk of a vehicle while preventing lane departure. The lane departure prevention apparatus basically comprises a lane departure tendency determining section, a running condition determining section and a braking force control section. The lane departure tendency determining section determines a lane departure tendency of the host vehicle from a driving lane. The running condition determining section determines a running condition of the host vehicle. The braking force control section controls a braking force to selectively produce at least one of a yaw moment on the host vehicle in accordance with the lane departure tendency of the host vehicle to avoid departure of the host vehicle from the driving lane, and a deceleration on the host vehicle in accordance with the running condition of the host vehicle.