Abstract:
A porous polysulfone membrane and process for the preparation of porous polysulfone media suitable for use in filtration comprises blending polysulfone with a particulate solid or with said particulate solid and a second polymer, extruding the resultant blend to form an article and leaching the particulate solid and second polymer from the article.
Abstract:
A porous material includes a polyhexahydrotriazine material. Pores in the porous material can be of various sizes including nanoscale sizes. The porous material may be used in a variety of applications, such as those requiring materials with a high strength-to-weight ratio. The porous material can include a filler material dispersed therein. The filler material can be, for example, a particle, a fiber, a fabric, or the like. In some examples, the filler material can be a carbon fiber or a carbon nanotube. A method of making a porous material includes forming a resin including a polyhemiaminal or polyhexahydrotriazine component and a polythioaminal component. The resin can be heated to promote segregation of the components into different phases with predominately one or the other component in each phase. Processing of the resin after phase segregation to decompose the polythioaminal component can form pores in the resin.
Abstract:
The object of the present invention is to provide a porous membrane by which a useful component can be recovered while suppressing the clogging during filtration of a protein solution and from which only a small amount of an eluate is eluted even when an aqueous solution is filtered.The present invention provides a porous membrane containing a hydrophobic polymer and a water-insoluble hydrophilic polymer, the porous membrane having a dense layer in the downstream portion of filtration in the membrane, having a gradient asymmetric structure in which the average pore diameter of fine pores increases from the downstream portion of filtration toward the upstream portion of filtration, and having a gradient index of the average pore diameter from the dense layer to the coarse layer of 0.5 to 12.0.
Abstract:
Provided are a contact sensitive device, a display apparatus including the same, and a method of manufacturing the same. The contact sensitive device includes an electroactive layer formed of an electroactive polymer having a plurality of nano pores and an electrode disposed on at least one surface of the electroactive layer. The electroactive layer has a β-phase structure and improved piezoelectricity without performing a stretching process or a polling process.
Abstract:
A porous material includes a polyhexahydrotriazine material. Pores in the porous material can be of various sizes including nanoscale sizes. The porous material may be used in a variety of applications, such as those requiring materials with a high strength-to-weight ratio. The porous material can include a filler material dispersed therein. The filler material can be, for example, a particle, a fiber, a fabric, or the like. In some examples, the filler material can be a carbon fiber or a carbon nanotube. A method of making a porous material includes forming a resin including a polyhemiaminal or polyhexahydrotriazine component and a polythioaminal component. The resin can be heated to promote segregation of the components into different phases with predominately one or the other component in each phase. Processing of the resin after phase segregation to decompose the polythioaminal component can form pores in the resin.
Abstract:
Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
Abstract:
Technologies and implementations for providing melt processable poly(vinyl alcohol) blends and poly(vinyl alcohol) based membranes are generally disclosed.
Abstract:
The present invention generally relates to porous membranes and other porous articles. In one aspect, the present invention is generally directed to porous membranes and other articles that have a pore size comparable to feature sizes of the extracellular matrix. Such articles may be useful, for example, for tissue engineering (e.g., as a substrate for culturing cells), as a filter, or for other applications. In some cases, the membranes may be formed from biocompatible and/or biodegradable materials. In some embodiments, such membranes may be formed using solvent evaporation induced self-assembly (EISA) techniques, although other techniques may be used in other embodiments. Still other aspects of the present invention are directed to methods of using such articles, kits involving such articles, and the like.
Abstract:
The invention relates to an isolated waterproof polymeric nanomembrane comprising pores of different geometric shapes and of a controlled size between 10 and 1000 nm, which is larger than the thickness of the membrane, and a method of producing the same comprising the process steps a. Providing a sacrifice layer on a surface of a solid support; b. Providing a polymerized layer of less than 1000 nm thickness on the surface of the sacrifice layer, by depositing a mixture of a polymer or a polymer precursor with a geometrically undefined pore template which is larger than the thickness of the polymerized layer, optionally followed by polymerization and/or crosslinking; c. Removing the pore template to obtain the polymerized layer with a controlled pore size; and d. Removing the sacrifice layer, thereby separating the solid support from the polymerized layer.
Abstract:
Provided are: a polyetherimide porous body which has a fine cell structure, a low relative permittivity and a high insulation breakdown voltage; and a method for producing the same. This polyetherimide porous body comprises a crosslinked body in which a polyetherimide having a specific repeated structural unit is ring-opened and crosslinked with a polyamine compound.