Abstract:
A method of reducing crosstalk. The method may include forming a first contact over a first vertical conductor. The method may include forming a second contact over a second vertical conductor. The method may include forming a capacitive coupler between the first contact and the second contact, wherein the capacitive coupler is to cancel crosstalk received at the second vertical conductor from the first vertical conductor.
Abstract:
A circuit board (1) is provided comprising a plurality of insulating layers, at least one ground layer and at least one layer comprising signal traces. The circuit board comprises at least a first conductive via (17) and a second conductive via (17). The first conductive via and the second conductive via penetrate through at least a first insulating layer of the plurality of insulating layers and are connected to a signal trace. The first conductive via and the second conductive via are arranged adjacent each other. At least in the first insulating layer the first conductive via and the second conductive via are separated in a first direction of separation (R) by a first adjustment portion comprising a dielectric material property different from the first insulating layer.
Abstract:
A circuit board (1) is provided comprising a plurality of insulating layers, at least one ground layer and at least one layer comprising signal traces. The circuit board comprises at least a first conductive via (17) and a second conductive via (17). The first conductive via and the second conductive via penetrate through at least a first insulating layer of the plurality of insulating layers and are connected to a signal trace. The first conductive via and the second conductive via are arranged adjacent each other. At least in the first insulating layer the first conductive via and the second conductive via are separated in a first direction of separation (R) by a first adjustment portion comprising a dielectric material property different from the first insulating layer.
Abstract:
A plurality of coaxial leads is made within a single via in a circuit substrate to enhance the density of vertical interconnection so as to match the demand for higher density multi-layers circuit interconnection between top circuit layer and bottom circuit layer of the substrate. Coaxial leads provide electromagnetic interference shielding among the plurality of coaxial leads in a single via.
Abstract:
A spark gap for protecting electronic circuits from excessive electrical surges comprises a substrate containing an opening, a dielectric medium occupying the opening, and first and second electrodes. The first electrode is embedded in the substrate, on one side of the opening, and has a first conductive surface that extends through the substrate and is substantially exposed in the opening and to the dielectric medium. The second electrode is embedded in the substrate, on another side of the opening, and has a second conductive surface that extends through the substrate and is substantially exposed in the opening and to the dielectric medium. The first conductive surface is in opposing relation to the second conductive surface, and they are spaced apart by a predetermined distance to establish a gap width. An electrical arc is generated across the opening when a voltage potential difference between the conductive surfaces exceeds a threshold value.
Abstract:
A dual-port capacitor structure includes a first electrode plate having a first opening; a second electrode plate having a second opening; and a third electrode plate, disposed in the first opening of the first electrode plate and the second opening of the second electrode plate. The first electrode plate, the second electrode plate and the third electrode plate locate on the same plane.
Abstract:
An electrical signal connection, an electrical signaling system, and a method of connecting printed circuit boards. The electrical signal connection having a first conductive via and a second conductive via disposed in a first printed circuit board. A first conductive trace with a first end and a second end has the first end electrically coupled to the first conductive via at a first distance from the top surface of the first printed circuit board. The second end of the first conductive via is electrically coupled to the second printed circuit board. A second conductive trace with a first end and a second end has the first end being electrically coupled to the second conductive via at a second distance from the top surface of the first printed circuit board. The second end being is electrically coupled to the second printed circuit board.
Abstract:
A capacitor structure is provided. In the capacitor structure, a signal electrode plate and an extension ground electrode plate are disposed on the same plane to form a co-plane capacitor structure. Due to slow wave characteristic, the resonance frequency of the capacitor structure is effectively raised and the capacitor structure may be applied in high frequency.
Abstract:
A circuit board may include hybrid via structures configured to connect to components, such as connectors and electronic components, mounted on the circuit board. A hybrid via structure may include one or more micro-vias configured to provide an electrical connection to a signal trace in the circuit board and one or more through-vias configured to provide a ground connection to at least one reference plane in the circuit board. In one embodiment, a plurality of circuit boards including the hybrid via structures and signal traces may be connected to establish a channel supporting differential signaling and data transfer rates of at least about 5 Gb/s. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
A semiconductor chip package includes a signal interconnection penetrating a semiconductor chip and transmitting a signal to the semiconductor chip and a power interconnection and a ground interconnection penetrating the semiconductor and supplying power and ground to the semiconductor chip. The power interconnection and the ground interconnection are arranged to neighbor each other adjacent to the signal interconnection.