Abstract:
A system for automated high-pressure synthesis and more particularly a high-pressure reactor assembly comprises a reaction block and a pressure manifold for the introduction of pressure to the reaction wells of a reaction block. The reactor includes one or more pressure resistant reaction wells or vessels disposed in the reaction block.
Abstract:
The invention relates to a scalable autoclave array for studying chemical reactions which consists of autoclave modules, which each consist of a reactor shell hermetically fastened over a reaction vessel and which can be filled with gas independently of one another via controllable autoclave valves from a pressure regulating chamber, which contains a pressure sensor and is connected via least one controllable valve to at least one gas supply and at least one gas outlet.
Abstract:
This invention relates to pollution control requirements for fossil fuel burning facilities, such as power plants, incinerators and cement kilns, and more particularity, to improved methods of generating ammonia from urea. Ammonia is the critical chemical additive used to reduce the emissions of nitrogen oxides from the combustion effluent by both selective non-catalytic reduction and selective catalytic reduction techniques.
Abstract:
There are provided a novel method and technology for arraying micro-particles. Micro-particle trapping capillaries each having an inner diameter smaller than the outer diameter of probe-immobilized micro-particles are prepared. By vacuuming the inside of each micro-particle trapping capillary, only one of the micro-particles is vacuumed onto an opening at the tip thereof and taken out from holders holding a plurality of the micro-particles. The micro-particle vacuumed onto the opening at the tip of each micro-particle trapping capillary is positioned at the opening of the capillary or the edge of each channel provided in a chip, the channels each having an inlet and an outlet with a slightly larger width than the outer diameter of the micro-particle so as to allow passage of only one micro-particle. The micro-particle vacuumed onto the opening at the capillary tip is injected into the capillary from the opening of the capillary or the channel edge of the chip.
Abstract:
Parallel semi-continuous or continuous reactors are disclosed. The parallel reactors preferably comprise four or more reaction vessels. The reaction vessels are preferably small volume reaction vessels, preferably pressure reaction vessels, and/or preferably integral with a common reactor block. The reaction vessels can comprise shaft-driven stirrers. At least two, preferably at least three or at least four liquid feed lines can provide selective fluid communication between each of the reaction vessels and one or more liquid reagent sources. Additional features, suitable in connection with parallel reactors or with single reaction vessels are also disclosed.
Abstract:
Twelve reaction vessels (2) in two parallel rows are attached to a switch block (401). The switch block (401) comprises a reaction block (403) and twelve slide plates (404), which are arranged within it and which can be adjusted between an open position, a closed position and a further position. In the open position, access in straight line to the associated reaction vessel (2) is possible whereas in the closed position, the corresponding reaction vessel (2) is closed in a pressure-tight manner by the switch block (401). In the case of a positive pressure or depression in the reaction vessel (2), the corresponding slide plate (404) is pressed by this positive pressure or depression against the reaction block (403) or is drawn onto it. By means of this switch block (401), it is also possible to carry out processes in which high positive pressures are present in the reaction vessels (2).
Abstract:
A method of impregnating a polymeric medical device with an antimicrobial agent is disclosed. The method involves forming a solution by dissolving triclosan in a compressed fluid and contacting the polymeric medical device with the solution. After the solution has been infused into the polymeric medical device, the solution and the medical device are separated.
Abstract:
A method and apparatus is provided to protect the mail carrier and mail recipient from exposure to mail contaminated with biological agents. A bio-safe device is user programmed and loaded with an inexpensive decontaminant to automatically perform a treatment cycle on deposited mail to eliminate anthrax and other infectious agents from within an enclosed mail receptacle. This provides the delivery mail carrier or an individual mail recipient the means to destroy infectious agents before physical contact with the mail.
Abstract:
Systems and methods involved in extreme high throughput screening of compounds which have an affinity for a biological target are disclosed. The system is based on a capillary bundle with two distinguishable ends wherein capillaries on one end are connected to compounds stored in discrete reservoirs and capillaries on the other end are bound and processed to form a two dimensional microarray. A capillary bundle having reaction wells for hybridization and compound reaction in one end of the capillaries is disclosed. Also disclosed are various methods of identifying a target compound in a liquid using this capillary bundle as well as methods of fabricating the bundle. A novel surface tension guided reaction chamber is also provided. Methods and chemistry for fabrication and use of a surface tension guided reaction chamber in binding and hybridization assays are also disclosed. Methods and systems for precise metering of fluids within the capillaries and at the reaction chambers, including the surface tension guided nullvirtualnull reaction well are provided.
Abstract:
Apparatuses and methods are described for parallel oligonucleotide synthesis of hundreds of different sequences and lengths at a time. Standard phosphoramidite chemistry is employed. The syntheses take place in a reaction plate compatible with the industrial standard microplate format to allow the use of readily available automated instruments for subsequent processing. Key parameters in reducing synthesis volume in small reaction wells are discussed. This invention provides solutions to the difficulties of low volume, high number synthetic reactions.