摘要:
A method includes: forming a buffer layer over an absorber layer of a photovoltaic device; and extrinsically doping the buffer layer after the forming step.
摘要:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
摘要:
An infrared solid-state imaging device with unit detecting sections in a matrix form, wherein the unit detecting section includes: an infrared light guiding layer; a first reflecting layer on the infrared light guiding layer; an infrared light detecting section on the first reflecting layer, the infrared light detecting section including an infrared light absorbing layer and upper and lower contact layers; and first metal wiring connected to the upper contact layer, wherein a side wall of the unit detecting section is inclined at an angle smaller than 45° to a normal direction, to form a groove between the adjacent unit detecting sections, a first insulating layer is provided on the side wall of the unit detecting section and second metal wiring is provided on the first insulating layer, and a refractive index of the first reflecting layer is lower than that of the lower contact layer.
摘要:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; forming a lightly doped drain in the substrate; and performing a first implantation process for implanting fluorine ions at a tiled angle into the substrate and part of the gate structure.
摘要:
According to one embodiment, a non-volatile memory device includes a plurality of electrodes, at least one semiconductor layer, conductive layers, and first and second insulating films. The electrodes are arranged side by side in a first direction. The semiconductor layer extends into the electrodes in the first direction. The conductive layers are provided between each electrode and the semiconductor layer and separated from each other in the first direction. The first insulating film contacts the conductive layers, and extends in the first direction along the semiconductor layer between the conductive layers and the semiconductor layer. The second insulating film is provided between the first insulating film and the semiconductor layer. The first insulating film includes a first portion located between the conductive layers and the second insulating film, and a second portion located between the interlayer insulating film and the second insulating film.
摘要:
A photodetector detects the absence or presence of light by detecting a change in the inductance of a coil. The magnetic field generated when a current flows through the coil passes through an electron-hole generation region. Charged particles in the electron-hole generation region come under the influence of the magnetic field, and generate eddy currents whose magnitudes depend on whether light is absent or present. The eddy currents generate a magnetic field that opposes the magnetic field generated by current flowing through the coil.
摘要:
A semiconductor device includes a gate electrode formed on a silicon substrate via a gate insulation film in correspondence to a channel region, source and drain regions of a p-type diffusion region formed in the silicon substrate at respective outer sides of sidewall insulation films of the gate electrode, and a pair of SiGe mixed crystal regions formed in the silicon substrate at respective outer sides of the sidewall insulation films in epitaxial relationship to the silicon substrate, the SiGe mixed crystal regions being defined by respective sidewall surfaces facing with each other, wherein, in each of the SiGe mixed crystal regions, the sidewall surface is defined by a plurality of facets forming respective, mutually different angles with respect to a principal surface of the silicon substrate.
摘要:
A heterostructure field effect transistor is provided comprising a semiconductor wire comprising in its longitudinal direction a source and a drain region, a channel region in between the source and drain region and in its transversal direction for the source region, a source core region and a source shell region disposed around the source core region, the source shell region having in its transversal direction for the drain region, a drain core region and a drain shell region disposed around the drain core region, the drain shell region having in its transversal direction for the channel region, a channel core region and a channel shell region disposed around the channel core region; wherein the thickness of the channel shell region is smaller than the thickness of the source shell region and is smaller than the thickness of the drain shell region.
摘要:
A semiconductor device is disclosed. The device includes a plurality of gates formed on a surface of a substrate, a plurality of sidewalls formed on side surfaces of the gates, a Sigma-shaped recess formed in the substrate between adjacent gates, a SiGe seed layer formed on an inner surface of the Sigma-shaped recess, boron-doped bulk SiGe formed on a surface of the SiGe seed layer, with the boron-doped bulk SiGe filling the Sigma-shaped recess, and a boron-doped SiGe regeneration layer formed in a first recess beneath the surface of the substrate. The first recess is formed by etching a portion of the SiGe seed layer and the boron-doped bulk SiGe in the Sigma-shaped recess, and the boron-doped SiGe regeneration layer has a higher concentration of boron than the SiGe seed layer or the boron-doped bulk SiGe.
摘要:
A method for forming a light emitting device includes forming a monocrystalline III-V emissive layer on a monocrystalline substrate and forming a first doped layer on the emissive layer. A first contact is deposited on the first doped layer. The monocrystalline substrate is removed from the emissive layer by a mechanical process. A second doped layer is formed on the emissive layer on a side from which the substrate has been removed. The second doped layer has a dopant conductivity opposite that of the first doped layer. A second contact is deposited on the second doped layer.