Abstract:
In a field emission cold cathode composed of a plurality of micro cold cathodes, the diameter of a plurality of openings formed in a gate electrode is large at a central region of an electron emission zone but small at a peripheral region of the electron emission zone, or the thickness of the gate electrode is small at the central region of the electron emission zone but large at the peripheral region of the electron emission zone. Alternatively, the thickness of an insulator layer is small at the central region of the electron emission zone but large at the peripheral region of the electron emission zone. Or, a resistance layer is provided between a substrate and a plurality of electron emission electrodes, and resistivity of the resistance layer is small at the central region of the electron emission zone but large at the peripheral region of the electron emission zone.
Abstract:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
Abstract:
In a field emission cathode, periphery portions of opening portions of a gate electrode are recessed on a side of a substrate, and a focusing electrode having opening portions which are identical in number with the opening portions of the gate electrode are disposed on the gate electrode. Further, a shield electrode having opening portions which are identical in number with opening portions of the gate electrode are disposed between the gate electrode and the focusing electrode. According to the above-mentioned construction, a focusing aberration can be reduced, and a focused electron flow can be obtained by a low electric potential of the gate electrode.
Abstract:
A method for controlling a field emission display to reduce emission to grid during turn on and turn off is provided. A field emission display (FED) includes emitter sites formed on a baseplate; a grid for controlling electron emission from the emitter sites; a display screen for collecting electrons to form an image and a power supply. In order to reduce emission to grid during turn on, the display screen is enabled by the power supply prior to enabling of the emitter sites. An anode-baseplate voltage differential is thus established prior to electron emission. For turn on, the method includes varying the capacitances of the control circuits for the display screen and grid such that a time constant (RC) for the grid is larger than a time constant (RC) for the display screen. Alternately the method of the invention can be implemented during turn on using software, using time delay circuit components, or using an emitter site control circuit to control electron flow to the emitter sites. During turn off, the electron emission and anode-baseplate voltage differential are eliminated while a path to ground is provided for the grid.
Abstract:
A fabrication process is disclosed using process steps (S1-S18) similar to those of semiconductor integrated circuit fabrication to produce lateral-emitter field-emission devices and their arrays. In a preferred fabrication process for the simplified anode device, the following steps are performed: an anode film (70) is deposited; an insulator film (90) is deposited over the anode film; an ultra-thin conductive emitter film (100) is deposited over the insulator and patterned; a trench opening (160) is etched through the emitter and insulator, stopping at the anode film, thus forming and automatically aligning an emitting edge of the emitter; and means are provided for applying an electrical bias to the emitter and anode, sufficient to cause field emission of electrons from the emitting edge of the emitter to the anode. The anode film may comprise a phosphor (75) for a device specially adapted for use in a field emission display. The fabrication process may also include steps to deposit additional insulator films (130) and to deposit additional conductive films for control electrodes (140), which are automatically aligned with the emitter blade edge or tip (110). A fabrication process for forming an evacuated or gas-filled sealed chamber in a substrate is disclosed.
Abstract:
An electron emitter plate (110) for an FED image display has an extraction (gate) electrode (22) spaced by a dielectric insulating spacer (125) from a cathode electrode including a conductive mesh (18). Arrays (12) of microtips (14) are located in mesh spacings (16), within apertures (26) formed in clusters (23) in extraction electrode (22). Microtips (14) are deposited through the apertures (26). The insulating spacer (125) is etched to undercut electrode (22) to connect apertures, forming a common cavity (141) for microtips (14) within each mesh spacing (16). Support beam structures (143) are deposited onto extraction electrode (22), either separately or simultaneously with formation of the microtips (14). The support beam structures (143) span the cavity (143) to support the extraction electrode (22) above the cathode electrode over cavity (143). The etch-out reduces the dielectric constant factor of gate-to-cathode capacitance in the finished structure. Strengthening the gate (22) with structures (143) enables gate support over the cavity (141).
Abstract:
Tips of emitters are protruded over a control electrode in a field emission cathode. The cathode is a part of an input cavity, and an anode facing the cathode is also a part of the input cavity. A voltage which is in the vicinity of a threshold value or less than the threshold value is applied across the control electrode and the emitters, so that an emission current is modulated in density by a RF input signal.
Abstract:
A device for emitting electrons, comprising a substrate, an insulating film formed on a surface of the substrate and having a recess, an emitter electrode formed on the insulating film and having an edge portion located at the recess, the edge portion of the emitter electrode being formed in the form of an arch within a plane perpendicular to the surface of the substrate so as to be sharpened toward a distal end of the emitter electrode, the edge portion of the emitter electrode being sharpened also in a planar direction parallel to the surface of the substrate toward the distal end of the emitter electrode so as to have a linear portion at the distal end, and the edge portion of the emitter electrode being adapted to emit electrons from the linear portion when an electric field is applied to the edge portion of the emitter electrode, and a gate electrode formed on the insulating structure and having an edge portion located at the recess and opposing the edge portion of the emitter electrode via a gap, the edge portion of the gate electrode being adapted to apply an electric field to the linear portion of the emitter electrode via the gap when a potential difference is given between the gate electrode and the emitter electrode.
Abstract:
A flat panel device is provided with an internal support structure in the form of a spacer. In one fabrication technique, the spacer is formed as a laminate of multiple layers of ceramic, glass-ceramic, ceramic-reinforced glass, devitrified glass, or/and metal coated with electrically insulating material. The spacer is placed between a backplate structure and a faceplate structure which are connected together to form an enclosure that encases the spacer. In another fabrication technique, the spacer constitutes a spacer wall placed between the backplate and faceplate structures. When the backplate structure is connected to the faceplate structure to form an enclosure that encases the spacer wall, the spacer wall follows a corrugated path adjacent to at least one of the faceplate and backplate structures.
Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.