Abstract:
An exemplary system comprises a power regulator and an emitting apparatus. The emitting apparatus is typically attached to or integrated with a display object, such as a merchandise package or container. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a first primary inductor voltage. The emitting apparatus comprises an illumination source and a secondary inductor coupled to the illumination source. The illumination source is adapted to emit visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor. In exemplary embodiments, the first and second inductors are substantially planar.
Abstract:
An exemplary printable composition of a liquid or gel suspension of two-terminal integrated circuits comprises: a plurality of two-terminal integrated circuits, each two-terminal integrated circuit of the plurality of two-terminal integrated circuits less than about 75 microns in any dimension; a first solvent; a second solvent different from the first solvent; and a viscosity modifier; wherein the composition has a viscosity substantially about 50 cps to about 25,000 cps at about 25° C.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
Abstract:
An exemplary power regulator apparatus provides power for illumination of a display object, such as a merchandise package or container, which has a light emitting apparatus comprising a secondary inductor and an illumination source. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a primary inductor voltage. The controller may also comprise a plurality of switches and a memory adapted to store values for switching frequency or switch on-time durations or pulse widths. The illumination source emits visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor.
Abstract:
Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.
Abstract:
An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
Abstract:
Over a flexible substrate are deposited stacked pixel layers including a bottom layer of LEDs forming blue pixels, a middle layer of LEDs forming green pixels, and a top layer of LEDs forming red pixels. Each LED die comprises an LED portion and an integrated transistor portion. Applying a voltage to a control terminal of the transistor portion energizes the LED portion. The pixels are substantially transparent, due to the LEDs being microscopic and the pixel areas being much larger, to allow light from the underlying layers to pass through. The three layers of pixels are aligned so that a combination of a single top red pixel, a single underlying green pixel, and a single underlying blue pixel form a single multi-color pixel. The different layers have transparent column and row lines.
Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.
Abstract:
Over a flexible substrate are deposited stacked pixel layers including a bottom layer of LEDs forming blue pixels, a middle layer of LEDs forming green pixels, and a top layer of LEDs forming red pixels. Each LED die comprises an LED portion and an integrated transistor portion. Applying a voltage to a control terminal of the transistor portion energizes the LED portion. The pixels are substantially transparent, due to the LEDs being microscopic and the pixel areas being much larger, to allow light from the underlying layers to pass through. The three layers of pixels are aligned so that a combination of a single top red pixel, a single underlying green pixel, and a single underlying blue pixel form a single multi-color pixel. The different layers have transparent column and row lines.