Abstract:
The invention relates to a high power LED package, in which a package body is integrally formed with resin to have a recess for receiving an LED chip. A first sheet metal member is electrically connected with the LED chip, supports the LED chip at its upper partial portion in the recess, is surrounded by the package body extending to the side face of the package body, and has a heat transfer section for transferring heat generated from the LED chip to the metal plate of the board and extending downward from the inside of the package body so that a lower end thereof is exposed at a bottom face of the package body thus to contact the board. A second sheet metal member is electrically connected with the LED chip spaced apart from the first sheet metal member for a predetermined gap, and extends through the inside of the package body to the side face of the package body in a direction opposite to the first sheet metal member. A transparent sealant is sealingly filled up into the recess. The LED package raises thermal radiation efficiency with a simplified structure in order to reduce the size and thickness thereof.
Abstract:
A chip coated LED package and a manufacturing method thereof. The chip coated LED package includes a light emitting chip composed of a chip die-attached on a submount and a resin layer uniformly covering an outer surface of the chip die. The chip coated LED package also includes an electrode part electrically connected by metal wires with at least one bump ball exposed through an upper surface of the resin layer. The chip coated LED package further includes a package body having the electrode part and the light emitting chip mounted thereon. The invention improves light efficiency by preventing difference in color temperature according to irradiation angles, increases a yield, miniaturizes the package, and accommodates mass production.
Abstract:
A Chip on Board (COB) package which can reduce the manufacturing costs by using a general PCB as a substrate, increase a heat radiation effect from a light source, thereby realizing a high quality light source at low costs, and a manufacturing method thereof. The COB package includes a board-like substrate with a circuit printed on a surface thereof, the substrate having a through hole. The package also includes a light source positioned in the through hole and including a submount and a dome structure made of resin, covering and fixing the light source to the substrate. The invention allows a good heat radiation effect by using the general PCB as the substrate, enabling manufacture of a high quality COB package at low costs. This in turn improves emission efficiency of the light source, ultimately realizing a high quality light source.
Abstract:
In an LED housing, a heat conducting part has a chip mounting area, a heat connecting area opposed to the chip mounting area and a groove formed adjacent to the heat connecting area. An electrical connecting part has a wiring area placed adjacent to the chip mounting area and an external power connecting area led to the wiring area. A housing body is made of molding resin, and integrally holds the heat conducting part and the electrical connecting part while isolating the electrical connecting part from the heat conducting part. The housing body is provided with a recess extended from a portion of the groove of the heat conducting part to a side of the housing body.
Abstract:
A Chip on Board (COB) package which can reduce the manufacturing costs by using a general PCB as a substrate, increase a heat radiation effect from a light source, thereby realizing a high quality light source at low costs, and a manufacturing method thereof. The COB package includes a board-like substrate with a circuit printed on a surface thereof, the substrate having a through hole. The package also includes a light source positioned in the through hole and including a submount and a dome structure made of resin, covering and fixing the light source to the substrate. The invention allows a good heat radiation effect by using the general PCB as the substrate, enabling manufacture of a high quality COB package at low costs. This in turn improves emission efficiency of the light source, ultimately realizing a high quality light source.
Abstract:
The invention relates to a high power LED package and a fabrication method thereof. The LED package includes a light emitting part for generating light in response to power applied, a heat conducting member with the light emitting part mounted thereon, a lead part for electrically connecting the light emitting part and a board, and a mold part for integrally fixing the heat conducting member and the lead part. The heat conducting member is composed of at least two metal layers in a height direction, and the lead part includes at least one first lead extended out of the heat conducting member and at least one second lead separated from the heat conducting member. The invention allows integration of two components into a single one, reducing the number of components and simplifying the assembly process, thereby reducing the manufacturing costs.
Abstract:
The invention relates to an LED package for facilitating color mixing using a diffuser and a manufacturing method of the same. The LED package includes a substrate with an electrode formed thereon, and an LED chip mounted on the substrate. The LED package also includes an encapsulant applied around the light emitting diode chip, containing a diffuser. The LED package further includes a lens part disposed on the light emitting diode chip and the encapsulant to radiate light in a wide angle. The LED package allows light from the light emitting diode chip to be emitted out of the package without distortion. The invention allows light to exit through the encapsulant containing the diffuser and the lens part, achieving uniform diffusion and emission of light from the LED chip, thereby increasing a radiating angle and obtaining a uniform light source.
Abstract:
A package board and a method for the manufacturing of the package board are disclosed. A package board, which includes a first metal layer, a heat-release layer stacked on the first metal layer with a first insulation layer interposed in-between, a cavity formed in the heat-release layer, a mounting layer formed in the cavity in contact with the first insulation layer, a first component mounted on the mounting layer, and a second insulation layer covering at least a portion of the heat-release layer and the cavity, may offer improved heat release and smaller thickness.
Abstract:
There is provided an LED package. An LED package according to an aspect of the invention includes a package body including a concave part formed as a mounting section, first and second lead frames mounted to the package body to be exposed at a lower surface of the concave part, an LED chip mounted to the lower surface of the concave part to be electrically connected to the first and second lead frames, and an encapsulant formed by mixing transparent resin and a phosphor and formed inside the concave part to encapsulate the LED chip. Here, a height from an upper surface of the LED chip and an upper surface of the encapsulant is 1 to 5 times larger than that of the LED chip.
Abstract:
The invention relates to a side-emitting LED package and a manufacturing method of the same. The invention provides a side-emitting LED package for emitting light from a light source sideward including a substrate with an electrode formed thereon. The package also includes a light source disposed on the substrate, a molded part that covers and protects the substrate with the light source thereon, and a reflective layer that covers an outer surface of the molded part. The molded part with the reflective layer forms a light transmitting surface in one side thereof. The invention allows easy manufacture of a reflecting surface in a desired shape, miniaturization regardless of the LED chip size, mass-production in an LED array, significantly improving productivity.