Abstract:
A method of providing a durable protective coating structure which comprises at least three layers, and which is stable at temperatures in excess of 400° C., where the method includes vapor depositing a first layer deposited on a substrate, wherein the first layer is a metal oxide adhesion layer selected from the group consisting of an oxide of a Group IIIA metal element, a Group IVB metal element, a Group VB metal element, and combinations thereof; vapor depositing a second layer upon said first layer, wherein said second layer includes a silicon-containing layer selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; and vapor depositing a third layer upon said second layer, wherein said third layer is a functional organic-comprising layer. Numerous articles useful in electronics, MEMS, nanoimprinting lithography, and biotechnology applications can be fabricated using the method.
Abstract:
This invention provides fluidic devices, in particular microfluidic devices, with diaphragm valves having low failure rates. Low failure rates are achieved by inhibiting sticking of the diaphragm to functional surfaces such as valve seats, valve chamber and fluidic channels and conduits. One way to implement this is to provide exposed surfaces facing the diaphragm, particularly valve seats, with a low energy material, such as a noble metal, a perfluorinated polymer, a self-assembled monolayer, hard diamond, diamond-like carbon or a metal oxide. In other embodiments, the valves are provided with ridges and the diaphragm is adhered to the fluidic or actuation layer with an adhesive material.
Abstract:
The present invention is related to a chemical vapor deposition method of depositing layers of materials to provide super-hydrophilic surface properties, or super-hydrophobic surface properties, or combinations of such properties at various locations on a given surface. The invention also relates to electronic applications which make use of super-hydrophobic surface properties, and to biological applications which make use of super-hydrophilic surface properties.
Abstract:
Embodiments of the invention relate to lithography method useful for patterning at sub-micron resolution. This method comprised of deposition and patterning self-assembled monolayer resists using rolling applicator and rolling mask exposure apparatus. Typically the application of these self-assembled monolayers involves contacting substrate materials with a rotatable applicator in the shape of cylinder or cone wetted with precursor materials. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact with self-assembled monolayer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating mask surface comprises metal nano holes or nanoparticles.
Abstract:
Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of rotationally symmetric disk materials, like magnetic and optical disks, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cone. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the disk is in contact or close proximity with the disk. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cone surface comprises metal nano holes or nanoparticles.
Abstract:
Embodiments of the invention relate to methods of anti-counterfeiting for nanostructures and nanostructured devices. Specifically we describe a method of embedding a coded micro- or nanopatterns in nanostructures fabricated using Near-field rolling mask lithography, where areas of such features can be embedded into a transparent cylindrical or conic frame, or fabricated on the surface of flexible film laminated on the surface of the frame. Alternatively, specific coded nanofeatures distribution can be created using modulation of intensity or wavelength of the light source along the width or length of such cylinder or cone, or modulation of flexible film thickness or contact pressure between the rotatable mask and a substrate.
Abstract:
We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
Abstract:
An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
Abstract:
We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biofunctional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, a siloxane substrate surface is treated using a combination of ozone and UV radiation to render the siloxane surface more hydrophilic, and subsequently a functional coating is applied in-situ over the treated surface of the siloxane substrate.
Abstract:
We have developed an improved vapor-phase deposition method and apparatus for the application of organic films/coatings containing a variety of functional groups on substrates. Most substrates can be coated using the method of the invention. The substrate surface is halogenated using a vaporous halogen-containing compound, followed by a reaction with at least one organic molecule containing at least one nucleophilic functional group capable of reacting with a halogenated substrate surface. The halogenation of the substrate surface and the subsequent reaction with the organic molecule nucleophilic functional group are carried out in the same process chamber in a manner such that the halogenated substrate surface does not lose its functionality prior to reaction with the nucleophilic functional group(s) on the organic molecule. Typically the process chamber is operated under a pressure ranging from about 1 mTorr to about 10 Torr.