Abstract:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
Abstract:
Techniques for shaping an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for shaping an ion beam. The apparatus may comprise an entrance electrode biased at a first voltage potential, wherein an ion beam enters the entrance electrode, an exit electrode biased at a second voltage potential, wherein the ion beam exits the exit electrode, and a first suppression electrode and a second suppression electrode positioned between the entrance electrode and the exit electrode, wherein the first suppression electrode and the second suppression electrode are independently biased to variably focus the ion beam.
Abstract:
An improved ion beam neutralizer (22) is provided for neutralizing the electrical charge of an ion beam (28) output from an extraction aperture (50). The neutralizer comprises a source of water (52); a vaporizer (54) connected to the source of water; a mass flow controller (56) connected to the vaporizer; and an inlet (60) connected to the mass flow controller. The vaporizer (54) converts water from the source (52) from a liquid state to a vapor state. The mass flow controller (56) receives water vapor from the vaporizer (54) and meters the volume of water vapor output by a mass flow controller outlet (66). The inlet (60) is provided with an injection port (68) located proximate the ion beam extraction aperture (50) and receives the metered volume from the outlet (66). The injection port (68) is positioned near the extraction aperture so that the ion beam and the water vapor interact to neutralize the ion beam. The improved ion beam neutralizer (22) is especially effective in low energy (less than ten kilo-electron volts (10 KeV)) beam applications.
Abstract:
A technique for manufacturing hit pattern media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The method may comprise forming an intermediate layer comprising a modified region and a first region adjacent to one another, where the modified region and the first region may have at least one different property; depositing magnetic species on the first region of the intermediate layer to form an active region; and depositing non-ferromagnetic species on the modified region of the intermediate layer to form a separator.
Abstract:
A method of patterning a substrate, comprises patterning a photoresist layer disposed on the substrate using imprint lithography and etching exposed portions of a hard mask layer disposed between the patterned photoresist layer and the substrate. The method may also comprise implanting ions into a magnetic layer in the substrate while the etched hard mask layer is disposed thereon.
Abstract:
A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.
Abstract:
A method and apparatus for forming a sheet are disclosed. A melt is cooled and a sheet is formed on the melt. This sheet has a first thickness. The sheet is then thinned from the first thickness to a second thickness using, for example, a heater or the melt. The cooling may be configured to allow solutes to be trapped in a region of the sheet and this particular sheet may be thinned and the solutes removed. The melt may be, for example, silicon, silicon and germanium, gallium, or gallium nitride.
Abstract:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
Abstract:
An ion implantation system includes an electrostatic lens. The electrostatic lens includes a terminal electrode, a ground electrode and a suppression electrode disposed therebetween. An ion beam enters the electrostatic lens through the terminal electrode and exits through the ground electrode. The electrodes have associated electrostatic equipotentials. An end plate is disposed between a top and bottom portion of the suppression electrode and/or the top and bottom portion of the ground electrode. The respective end plate has a shape which corresponds to the electrostatic equipotential associated with the particular electrode in order to maintain uniformity of the beam as it passes through the electrostatic lens.
Abstract:
A melt of a material is cooled and a sheet of the material is formed in the melt. This sheet is transported, cut into at least one segment, and cooled in a cooling chamber. The material may be Si, Si and Ge, Ga, or GaN. The cooling is configured to prevent stress or strain to the segment. In one instance, the cooling chamber has gas cooling.