摘要:
A method is provided which includes forming a hardmask feature adjacent to a patterned sacrificial structure of a semiconductor topography, selectively removing the patterned sacrificial structure to expose a lower layer and etching exposed portions of the lower layer in alignment with the hardmask feature. In some embodiments, forming the hardmask feature may include conformably depositing a hardmask material above the patterned sacrificial structure and lower layer as well as blanket etching the hardmask material such that upper surfaces of the patterned sacrificial structure and portions of the lower layer are exposed and portions of the hardmask material remain along sidewalls of the patterned sacrificial structure. The method may be applied to produce an exemplary semiconductor topography including a plurality of gate structures each having a width less than approximately 70 nm, wherein a variation of the widths among the plurality of gate structures is less than approximately 10%.
摘要:
In one embodiment, a self-aligned contact (SAC) trench structure is formed through a dielectric layer to expose an active region of a MOS transistor. The SAC trench structure not only exposes the active region for electrical connection but also removes portions of a stress liner over the active region. This leaves the stress liner mostly on the sidewall and top of the gate of the MOS transistor. Removing portions of the stress liner over the active region substantially removes the lateral component of the strain imparted by the stress liner on the substrate, allowing for improved drive current without substantially degrading a complementary MOS transistor.
摘要:
In one embodiment, an integrated circuit includes a PMOS transistor having a gate stack comprising a P+ doped gate polysilicon layer and a nitrided gate oxide (NGOX) layer. The NGOX layer may be over a silicon substrate. The integrated circuit further includes an interconnect line formed over the transistor. The interconnect line includes a hydrogen getter material and may comprise a single material or stack of materials. The interconnect line advantageously getters hydrogen (e.g., H2 or H2O) that would otherwise be trapped in the NGOX layer/silicon substrate interface, thereby improving the negative bias temperature instability (NBTI) lifetime of the transistor.
摘要翻译:在一个实施例中,集成电路包括具有包括P +掺杂栅极多晶硅层和氮化栅极氧化物(NGOX)层的栅极堆叠的PMOS晶体管。 NGOX层可以在硅衬底之上。 集成电路还包括形成在晶体管上的互连线。 互连线包括吸氢材料,并且可以包括单一材料或材料堆。 互连线有利地吸收否则将被捕获在NGOX层/硅衬底界面中的氢(例如,H 2 H 2或H 2 O 2),从而提高负偏压温度 晶体管的不稳定性(NBTI)寿命。
摘要:
In one embodiment, a sacrificial layer is deposited over a base layer. The sacrificial layer is used to define a subsequently formed floating metal structure. The floating metal structure may be anchored into the base layer. Once the floating metal structure is formed, the sacrificial layer surrounding the floating metal structure is etched to create a unity-k dielectric region separating the floating metal structure from the base layer. The unity-k dielectric region also separates the floating metal structure from another floating metal structure. In one embodiment, a noble gas fluoride such as xenon difluoride is used to etch a sacrificial layer of polycrystalline silicon.
摘要:
In one embodiment, a passivation level includes a low-k dielectric. To prevent the low-k dielectric from absorbing moisture when exposed to air, exposed portions of the low-k dielectric are covered with spacers. As can be appreciated, this facilitates integration of low-k dielectrics in passivation levels. Low-k dielectrics in passivation levels help lower capacitance on metal lines, thereby reducing RC delay and increasing signal propagation speeds.
摘要:
In one embodiment, a sacrificial layer is deposited over a base layer. The sacrificial layer is used to define a subsequently formed floating metal structure. The floating metal structure may be anchored into the base layer. Once the floating metal structure is formed, the sacrificial layer surrounding the floating metal structure is etched to create a unity-k dielectric region separating the floating metal structure from the base layer. The unity-k dielectric region also separates the floating metal structure from another floating metal structure. In one embodiment, a noble gas fluoride such as xenon difluoride is used to etch a sacrificial layer of polycrystalline silicon.
摘要:
A method of making a semiconductor structure, includes annealing a structure in a deuterium-containing atmosphere. The structure includes (i) a substrate, (ii) a gate dielectric on the substrate, (iii) a gate on the gate dielectric, (iv) an etch-stop layer on the gate, and (v) an interlayer dielectric on the etch-stop layer.
摘要:
Two different regions of a semiconductor substrate are implanted with dopants/ions. The implantation may occur though a sacrificial oxide layer disposed over the substrate. Following implantation in one or both regions, the substrate may be annealed and the sacrificial oxide layer removed. An oxide layer is then grown over the implanted regions of the substrate. For some embodiments, the substrate may be implanted with arsenic and/or with phosphorus. Further, the anneal may be performed for approximately 30 to 120 minutes at a temperature between approximately 900° C. and 950° C.
摘要:
A method of forming a field oxide or an isolation region in a semiconductor die. An oxidation mask layer (over an oxide layer disposed over the substrate) is patterned and subsequently etched, preferably so that the oxidation mask layer may have a nearly vertical sidewall. The oxide layer and the substrate in the isolation region are etched to form a recess in the substrate having a sloped surface with respect to the sidewall of the oxidation mask layer. A field oxide is then grown in the recess using a dry oxidizing atmosphere. The sloped sidewall of the substrate recess effectively moves the face of the exposed substrate away from the edge of the oxidation mask layer sidewall. Compared to non-sloped techniques, the oxidation appears to start with a built-in offset from the patterned etch. This leads to a reduction of oxide encroachment and less field oxide thinning. The preferred range of slopes for the substrate sidewall is from approximately 10.degree. to 40.degree. with respect to the oxidation mask layer sidewall.
摘要:
Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer. The multi-layer charge-trapping region includes a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer and a second nitride layer.